首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aging is characterized by the dynamic remodeling of the immune system designated “immunosenescence,” and is associated with altered hematopoiesis, thymic involution, and lifelong immune stimulation by multitudinous chronic stressors, including the cytomegalovirus (CMV). Such alterations may contribute to a lowered proportion of naïve T-cells and to reduced diversity of the T-cell repertoire. In the peripheral circulation, a shift occurs towards accumulations of T and B-cell populations with memory phenotypes, and to accumulation of putatively senescent and exhausted immune cells. The aging-related accumulations of functionally exhausted memory T lymphocytes, commonly secreting pro-inflammatory cytokines, together with mediators and factors of the innate immune system, are considered to contribute to the low-grade inflammation (inflammaging) often observed in elderly people. These senescent immune cells not only secrete inflammatory mediators, but are also able to negatively modulate their environments. In this review, we give a short summary of the ways that immunosenescence, inflammaging, and CMV infection may cause insufficient immune responses, contribute to the establishment of the hyperinflammatory syndrome and impact the severity of the coronavirus disease 2019 (COVID-19) in elderly people.  相似文献   

2.
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as “inflammaging”. Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.  相似文献   

3.
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.  相似文献   

4.
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells’ differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies—type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.  相似文献   

5.
The innate and adaptive immune systems play an essential role in host defense against pathogens. Various signal transduction pathways monitor and balance the immune system since an imbalance may promote pathological states such as allergy, inflammation, and cancer. Mast cells have a central role in the regulation of the innate/adaptive immune system and are involved in the pathogenesis of many inflammatory and allergic diseases by releasing inflammatory mediators such as histamines, proteases, chemotactic factors, and cytokines. Although various signaling pathways are associated with mast cell activation, our discovery and characterization of the pLysRS-Ap4A signaling pathway in these cells provided an additional important step towards a full understanding of the intracellular mechanisms involved in mast cell activation. In the present review, we will discuss in depth this signaling pathway’s contribution to host defense and the pathological state.  相似文献   

6.
Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation and hepatocyte injury and constitutes hepatic manifestation of the metabolic syndrome. The pathogenesis of NASH is complex and implicates cross-talk between different metabolically active sites, such as liver and adipose tissue. Obesity is considered a chronic low-grade inflammatory state and the liver has been recognized as being an “immunological organ”. The complex role of the immune system in the pathogenesis of NASH is currently raising great interest, also in view of the possible therapeutic potential of immunotherapy in NASH. This review focuses on the disturbances of the cells constituting the innate and adaptive immune system in the liver and in adipose tissue.  相似文献   

7.
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.  相似文献   

8.
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.  相似文献   

9.
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.  相似文献   

10.
Cerebral small vessel disease (CSVD) represents a cluster of various vascular disorders with different pathological backgrounds. The advanced vasculature net of cerebral vessels, including small arteries, capillaries, arterioles and venules, is usually affected. Processes of oxidation underlie the pathology of CSVD, promoting the degenerative status of the epithelial layer. There are several classifications of cerebral small vessel diseases; some of them include diseases such as Binswanger’s disease, leukoaraiosis, cerebral microbleeds (CMBs) and lacunar strokes. This paper presents the characteristics of CSVD and the impact of the current knowledge of this topic on the diagnosis and treatment of patients.  相似文献   

11.
Ischemia-reperfusion injury (IRI) is encountered in various stages during solid organ transplantation (SOT). IRI is known to be a multifactorial inflammatory condition involving hypoxia, metabolic stress, leukocyte extravasation, cellular death (including apoptosis, necrosis and necroptosis) and an activation of immune response. Although the cycle of sterile inflammation during IRI is consistent among different organs, the underlying mechanisms are poorly understood. Receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL) are thought to be crucial in the implementation of necroptosis. Moreover, apart from “silent” apoptotic death, necrosis also causes sterile inflammation—necroinflammation, which is triggered by various damage-associated molecular patterns (DAMPs). Those DAMPs activate the innate immune system, causing local and systemic inflammatory responses, which can result in graft failure. In this overview we summarize knowledge on mechanisms of sterile inflammation processes during SOT with special focus on necroptosis and IRI and discuss protective strategies.  相似文献   

12.
Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive ‘Sabra’ hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.  相似文献   

13.
Immune memory is a defining characteristic of adaptive immunity, but recent work has shown that the activation of innate immunity can also improve responsiveness in subsequent exposures. This has been coined “trained immunity” and diverges with the perception that the innate immune system is primitive, non-specific, and reacts to novel and recurrent antigen exposures similarly. The “exposome” is the cumulative exposures (diet, exercise, environmental exposure, vaccination, genetics, etc.) an individual has experienced and provides a mechanism for the establishment of immune training or immunotolerance. It is becoming increasingly clear that trained immunity constitutes a delicate balance between the dose, duration, and order of exposures. Upon innate stimuli, trained immunity or tolerance is shaped by epigenetic and metabolic changes that alter hematopoietic stem cell lineage commitment and responses to infection. Due to the immunomodulatory role of the exposome, understanding innate immune training is critical for understanding why some individuals exhibit protective phenotypes while closely related individuals may experience immunotolerant effects (e.g., the order of exposure can result in completely divergent immune responses). Research on the exposome and trained immunity may be leveraged to identify key factors for improving vaccination development, altering inflammatory disease development, and introducing potential new prophylactic treatments, especially for diseases such as COVID-19, which is currently a major health issue for the world. Furthermore, continued exposome research may prevent many deleterious effects caused by immunotolerance that frequently result in host morbidity or mortality.  相似文献   

14.
Hepatocellular carcinoma (HCC) develops almost entirely in the presence of chronic inflammation. Chronic hepatitis B virus (HBV) infection with recurrent immune-mediated liver damage ultimately leads to cirrhosis and HCC. It is widely accepted that HBV infection induces the dysfunction of the innate and adaptive immune responses that engage various immune cells. Natural killer (NK) cells are associated with early antiviral and antitumor properties. On the other hand, inflammatory cells release various cytokines and chemokines that may promote HCC tumorigenesis. Moreover, immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressive cells play a critical role in hepatocarcinogenesis. HBV-specific CD8+ T cells have been identified as pivotal players in antiviral responses, whilst extremely activated CD8+ T cells induce enormous inflammatory responses, and chronic inflammation can facilitate hepatocarcinogenesis. Controlling and maintaining the balance in the immune system is an important aspect in the management of HBV-related HCC. We conducted a review of the current knowledge on the immunopathogenesis of HBV-induced inflammation and the role of such immune activation in the tumorigenesis of HCC based on the recent studies on innate and adaptive immune cell dysfunction in HBV-related HCC.  相似文献   

15.
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain “hot” or “immune-sensitive” tumors become “cold” or “immune-resistant”, with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.  相似文献   

16.
Inflammatory colon diseases, which are a global health concern, include a variety of gastrointestinal tract disorders, such as inflammatory bowel disease and colon cancer. The pathogenesis of these colon disorders involves immune alterations with the pronounced infiltration of innate and adaptive immune cells into the intestines and the augmented expression of mucosal pro-inflammatory cytokines stimulated by commensal microbiota. Epidemiological studies during the past half century have shown that the proportion of obese people in a population is associated with the incidence and pathogenesis of gastrointestinal tract disorders. The advancement of understanding of the immunological basis of colon disease has shown that adipocyte-derived biologically active substances (adipokines) modulate the role of innate and adaptive immune cells in the progress of intestinal inflammation. The biomedical significance in immunological homeostasis of adipokines, including adiponectin, leptin, apelin and resistin, is clear. In this review, we highlight the existing literature on the effect and contribution of adipokines to the regulation of immunological homeostasis in inflammatory colon diseases and discuss their crucial roles in disease etiology and pathogenesis, as well as the implications of these results for new therapies in these disorders.  相似文献   

17.
The autonomic nervous system (ANS) and the immune system are deeply interrelated. The ANS regulates both innate and adaptive immunity through the sympathetic and parasympathetic branches, and an imbalance in this system can determine an altered inflammatory response as typically observed in chronic conditions such as systemic autoimmune diseases. Rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis all show a dysfunction of the ANS that is mutually related to the increase in inflammation and cardiovascular risk. Moreover, an interaction between ANS and the gut microbiota has direct effects on inflammation homeostasis. Recently vagal stimulation techniques have emerged as an unprecedented possibility to reduce ANS dysfunction, especially in chronic diseases characterized by pain and a decreased quality of life as well as in chronic inflammation.  相似文献   

18.
Non-alcoholic fatty liver disease (NAFLD) represents an increasing global health burden. Cellular senescence develops in response to cellular injury, leading not only to cell cycle arrest but also to alterations of the cellular phenotype and metabolic functions. In this review, we critically discuss the currently existing evidence for the involvement of cellular senescence in NAFLD in order to identify areas requiring further exploration. Hepatocyte senescence can be a central pathomechanism as it may foster intracellular fat accumulation, fibrosis and inflammation, also due to secretion of senescence-associated inflammatory mediators. However, in some non-parenchymal liver cell types, such as hepatic stellate cells, senescence may be beneficial by reducing the extracellular matrix deposition and thereby reducing fibrosis. Deciphering the detailed interaction between NAFLD and cellular senescence will be essential to discover novel therapeutic targets halting disease progression.  相似文献   

19.
The recent pandemic Sars-CoV2 infection and studies on previous influenza epidemic have drawn attention to the association between the obesity and infectious diseases susceptibility and worse outcome. Metabolic complications, nutritional aspects, physical inactivity, and a chronic unbalance in the hormonal and adipocytokine microenvironment are major determinants in the severity of viral infections in obesity. By these pleiotropic mechanisms obesity impairs immune surveillance and the higher leptin concentrations produced by adipose tissue and that characterize obesity substantially contribute to such immune response dysregulation. Indeed, leptin not only controls energy balance and body weight, but also plays a regulatory role in the interplay between energy metabolism and immune system. Since leptin receptor is expressed throughout the immune system, leptin may exert effects on cells of both innate and adaptive immune system. Chronic inflammatory states due to metabolic (i.e., obesity) as well as infectious diseases increase leptin concentrations and consequently lead to leptin resistance further fueling inflammation. Multiple factors, including inflammation and ER stress, contribute to leptin resistance. Thus, if leptin is recognized as one of the adipokines responsible for the low grade inflammation found in obesity, on the other hand, impairments of leptin signaling due to leptin resistance appear to blunt the immunologic effects of leptin and possibly contribute to impaired vaccine-induced immune responses. However, many aspects concerning leptin interactions with inflammation and immune system as well as the therapeutical approaches to overcome leptin resistance and reduced vaccine effectiveness in obesity remain a challenge for future research.  相似文献   

20.
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body’s healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号