首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Background and aim: Progress in laboratory diagnostics of IgE-mediated allergy is the use of component-resolved diagnosis. Our study analyses the results of specific IgE to 295 allergen reagents (117 allergenic extracts and 178 molecular components) in patients suffering from atopic dermatitis (AD) with the use of ALEX2 Allergy Explorer. Method: The complete dermatological and allergological examination, including the examination of the sensitization to molecular components with ALEX2 Allergy Explorer testing, was performed. The statistical analysis of results was performed with these methods: TURF (total unduplicated reach and frequency), best reach and frequency by group size, two-sided tests, Fisher’s exact test, and chi-square test (at an expected minimum frequency of at least 5). Results: Altogether, 100 atopic dermatitis patients were examined: 48 men, 52 women, the average age 40.9 years, min. age 14 years, max. age 67 years. The high and very high level of specific IgE was reached in 75.0% of patients to 18 molecular components: from PR-10 proteins (Aln g 1, Bet v 1, Cor a1.0103, Cor a1.0401, Fag s 1), lipocalin (Can f 1), NPC2 family (Der f 2, Der p 2), uteroglobin (Fel d 1), from Alternaria alternata (Alt a 1), Beta expansin (Lol p 1, Phl p 1), molecular components from Timothy, cultivated rye (Secc pollen) and peritrophin-like protein domain Der p 23. The high and very high level of specific IgE to other lipocalins (Fel d 7, Can f 4), to arginine kinase (Bla g 9, German cockroach), and to allergen extracts Art v (mugwort), and Cyn d (Bermuda grass) reached 52.0% of patients. The severity of AD is in significant relation to the sensitization to molecular components of storage mites (Gly d 2, Lep d 2—NPC2 family), lipocalins (Can f 1, Can f 2, Can f 4, and Can f 6), arginine kinase (Asp f 6, Bla g 9, Der p 20, Pen m 2), uteroglobin (Fel d 1, Ory c 3), Mn superoxide dismutase (Mala s 11), PR-10 proteins (Fag s 1, Mal d 1, Cor a 1.0401, Cor a 1.0103), molecular components of the peritrophin-like domain (Der p 21, Der p 23), and to Secc pollen. In the subgroup of patients suffering from bronchial asthma, the significant role play molecular components from house dust mites and storage mites (Lep d 2, Der p 2, Der f 2—NPC2 family), cysteine protease (Der p 1), peritrophin-like protein domain (Der p 21, Der p 23), enolase from Alternaria alternata (Alt a 6), and Beta expansin Phl p 1. Conclusion: The results of our study demonstrate the detailed profile of sensitization to allergens reagents (allergen extract and molecular components) in patients with atopic dermatitis. We show the significance of disturbed epidermal barrier, resulting in increased penetration of allergens. We confirmed the significant relationship between the severity of AD, the occurrence of bronchial asthma and allergic rhinitis, and high levels of specific IgE to allergen reagents. Our results may be important for regime measures and immunotherapy; Der p 23 shall be considered as an essential component for the diagnosis and specific immunotherapy of house dust mite allergy.  相似文献   

2.
3.
Peanut allergy can be life‐threatening and is mediated by allergen‐specific immunoglobulin E (IgE) antibodies. Investigation of IgE antibody binding to allergenic epitopes can identify specific interactions underlying the allergic response. Here, we report a surface plasmon resonance imaging (SPRi) immunoassay for differentiating IgE antibodies by epitope‐resolved detection. IgE antibodies were first captured by magnetic beads bearing IgE ?‐chain‐specific antibodies and then introduced into an SPRi array immobilized with epitopes from the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2). Differential epitope responses were achieved by establishing a binding environment that minimized cross‐reactivity while maximizing analytical sensitivity. IgE antibody binding to each Ara h2 epitope was distinguished and quantified from patient serum samples (10 μL each) in a 45 min assay. Excellent correlation of Ara h2‐specific IgE values was found between ImmunoCAP assays and the new SPRi method.  相似文献   

4.
Celery is a frequent cause of food allergy in pollen‐sensitized patients and can induce severe allergic reactions. Clinical symptoms cannot be predicted by skin prick tests (SPTs) or by determining allergen‐specific immunoglobulin E (IgE). Our aim was to identify specific IgE binding peptides by using an array technique. For our study, the sera of 21 patients with positive double‐blind, placebo‐controlled food challenge (DBPCFC) to celery, as well as the sera of 17 healthy patients were used. Additionally, all patients underwent skin tests along with determinations of specific IgE binding. The major allergen of celery Api g 1.0101 (Apium graveolens) was synthesized as an array of overlapping peptides and probed with the patients' sera. We developed an improved immunoassay protocol by investigating peptide lengths, peptide densities, incubation parameters, and readout systems, which could influence IgE binding. Sera of celery‐allergic patients showed binding to three distinct regions of Api g 1.0101. The region including amino acids 100 to 126 of Api g 1.0101 is the most important region for IgE binding. This region caused a fivefold higher binding of IgE from the sera of celery‐allergic patients compared to those of healthy individuals. In particular, one peptide (VLVPTADGGSIC) was recognized by all sera of celery‐allergic patients. In contrast, no binding to this peptide was detected in sera of the healthy controls. Our improved assay strategy allows us to distinguish between celery‐allergic and healthy individuals, but needs to be explored in a larger cohort of well‐defined patients.  相似文献   

5.
It is difficult to treat allergic diseases including asthma completely because its pathogenesis remains unclear. House dust mite (HDM) is a critical allergen and Toll-like receptor (TLR) 4 is a member of the toll-like receptor family, which plays an important role in allergic diseases. The purpose of this study was to characterize a novel allergen, Der f 38 binding to TLR4, and unveil its role as an inducer of allergy. Der f 38 expression was detected in the body and feces of Dermatophagoides farinae (DF). Electron microscopy revealed that it was located in the granule layer, the epithelium layer, and microvilli of the posterior midgut. The skin prick test showed that 60% of allergic subjects were Der f 38-positive. Der f 38 enhanced surface 203c expression in basophils of Der f 38-positive allergic subjects. By analysis of the model structure of Der p 38, the expected epitope sites are exposed on the exterior side. In animal experiments, Der f 38 triggered an infiltration of inflammatory cells. Intranasal (IN) administration of Der f 38 increased neutrophils in the lung. Intraperitoneal (IP) and IN injections of Der f 38 induced both eosinophils and neutrophils. Increased total IgE level and histopathological features were found in BALB/c mice treated with Der f 38 by IP and IN injections. TLR4 knockout (KO) BALB/c mice exhibited less inflammation and IgE level in the sera compared to wild type (WT) mice. Der f 38 directly binds to TLR4 using biolayer interferometry. Der f 38 suppressed the apoptosis of neutrophils and eosinophils by downregulating proteins in the proapoptotic pathway including caspase 9, caspase 3, and BAX and upregulating proteins in the anti-apoptotic pathway including BCL-2 and MCL-1. These findings might shed light on the pathogenic mechanisms of allergy to HDM.  相似文献   

6.
Ovalbumin is a major allergen in hen egg white that causes IgE-mediatedfood allergic reactions in children. In this study, the immunodominantIgE-binding epitopes of ovalbumin were mapped using arrays ofoverlapping peptides synthesized on activated cellulose membranes.Pooled human sera from 18 patients with egg allergy were usedto probe the membrane. Five distinct regions were found to containdominant allergic IgE epitopes, these being L38T49, D95A102,E191V200, V243E248 and G251N260. The critical amino acids involvedin IgE antibody binding were also determined. These epitopeswere composed primarily of hydrophobic amino acids, followedby polar and charged residues and being comprised of ß-sheetand ß-turn structures. One epitope, D95A102, consistedof a single -helix. These results provide useful informationon the functional role of amino acid residues to evaluate thestructure–function relationships and structural propertiesof allergic epitopes in ovalbumin. They also provide a strategicapproach for engineering ovalbumin to reduce its allergenicity. Received January 9, 2003; revised April 23, 2003; accepted August 28, 2003.  相似文献   

7.
Epidemiological and clinical studies have suggested that intake of n-3 polyunsaturated fatty acids (PUFA) reduces the incidence of allergic airway diseases and improves pulmonary function in patients with allergic asthma. However, the pharmacological targets of PUFA have not been elucidated upon. We investigated whether free fatty acid receptor 4 (FFA4, also known as GPR120) is a molecular target for beneficial PUFA in asthma therapy. In an ovalbumin (OVA)-induced allergic asthma model, compound A (a selective agonist of FFA4) was administrated before OVA sensitization or OVA challenge in FFA4 wild-type (WT) and knock-out (KO) mice. Compound A treatment of RBL-2H3 cells suppressed mast cell degranulation in vitro in a concentration-dependent manner. Administration of compound A suppressed in vivo allergic characteristics in bronchoalveolar lavage fluid (BALF) and lungs, such as inflammatory cytokine levels and eosinophil accumulation in BALF, inflammation and mucin secretion in the lungs. Compound A-induced suppression was not only observed in mice treated with compound A before OVA challenge, but in mice treated before OVA sensitization as well, implying that compound A acts on mast cells as well as dendritic cells. Furthermore, this suppression by compound A was only observed in FFA4-WT mice and was absent in FFA4-KO mice, implying that compound A action is mediated through FFA4. Activation of FFA4 may be a therapeutic target of PUFA in allergic asthma by suppressing the activation of dendritic cells and mast cells, suggesting that highly potent specific agonists of FFA4 could be a novel therapy for allergic asthma.  相似文献   

8.
Asthma is a major driver of health care costs across ages. Despite widely disseminated asthma-treatment guidelines and a growing variety of effective therapeutic options, most patients still experience symptoms and/or refractoriness to standard of care treatments. As a result, most patients undergo a further intensification of therapy to optimize symptom control with a subsequent increased risk of side effects. Raising awareness about the relevance of evaluating aeroallergen sensitizations in asthmatic patients is a key step in better informing clinical practice while new molecular tools, such as the component resolved diagnosis, may be of help in refining the relationship between sensitization and therapeutic recommendations. In addition, patient care should benefit from reliable, easy-to-measure and clinically accessible biomarkers that are able to predict outcome and disease monitoring. To attain a personalized asthma management and to guide adequate treatment decisions, it is of paramount importance to expand clinicians’ knowledge about the tangled relationship between asthma and allergy from a molecular perspective. Our review explores the relevance of allergen testing along the asthma patient’s journey, with a special focus on recurrent wheezing children. Here, we also discuss the unresolved issues regarding currently available biomarkers and summarize the evidence supporting the eosinophil-derived neurotoxin as promising biomarker.  相似文献   

9.
Plant-food allergy is an increasing problem, with nonspecific lipid transfer proteins (nsLTPs) triggering mild/severe reactions. Pru p 3 is the major sensitizer in LTP food allergy (FA). However, in vivo and in vitro diagnosis is hampered by the need for differentiating between asymptomatic sensitization and allergy with clinical relevance. The basophil activation test (BAT) is an ex vivo method able to identify specific IgE related to the allergic response. Thus, we aimed to establish the value of BAT in a precise diagnosis of LTP-allergic patients. Ninety-two individuals with peach allergy sensitized to LTP, Pru p 3, were finally included, and 40.2% of them had symptoms to peanut (n = 37). In addition, 16 healthy subjects were recruited. BAT was performed with Pru p 3 and Ara h 9 (peanut LTP) at seven ten-fold concentrations, and was evaluated by flow cytometry, measuring the percentage of CD63 (%CD63+) and CD203c (%CD203chigh) cells, basophil allergen threshold sensitivity (CD-Sens), and area under the dose–response curve (AUC). Significant changes in BAT parameters (%CD63+ and %CD203chigh) were found between the controls and patients. However, comparisons for %CD63+, %CD203chigh, AUC, and CD-Sens showed similar levels among patients with different symptoms. An optimal cut-off was established from ROC curves, showing a significant positive percentage of BAT in patients compared to controls and great values of sensitivity (>87.5%) and specificity (>85%). In addition, BAT showed differences in LTP-allergic patients tolerant to peanut using its corresponding LTP, Ara h 9. BAT can be used as a potential diagnostic tool for identifying LTP allergy and for differentiating peanut tolerance, although neither reactivity nor sensitivity can distinguish the severity of the clinical symptoms.  相似文献   

10.

Background  

Botanical products are frequently used for treatment of nasal allergy. Three of these substances, Cinnamomum zeylanicum, Malpighia glabra, and Bidens pilosa, have been shown to have a number of anti-allergic properties in-vitro. The current study was conducted to determine the effects of these combined ingredients upon the nasal response to allergen challenge in patients with seasonal allergic rhinitis.  相似文献   

11.
Diagnosis of type I hypersensitivity reactions (IgE-mediated reactions) to penicillins is based on clinical history, skin tests (STs), and drug provocation tests (DPTs). Among in vitro complementary tests, the fluoro-enzyme immunoassay (FEIA) ImmunoCAP® (Thermo-Fisher, Waltham, MA, USA) is the most widely used commercial method for detecting drug-specific IgE (sIgE). In this study, we aimed to analyze the utility of ImmunoCAP® for detecting sIgE to penicillin G (PG) and amoxicillin (AX) in patients with confirmed penicillin allergy. The study includes 139 and 250 patients evaluated in Spain and Italy, respectively. All had experienced type I hypersensitivity reactions to penicillins confirmed by positive STs. Additionally, selective or cross-reactive reactions were confirmed by DPTs in a subgroup of patients for further analysis. Positive ImmunoCAP® results were 39.6% for PG and/or AX in Spanish subjects and 52.4% in Italian subjects. When only PG or AX sIgE where analyzed, the percentages were 15.1% and 30.4%, respectively, in Spanish patients; and 38.9% and 46% in Italian ones. The analysis of positive STs showed a statistically significant higher percentage of positive STs to PG determinants in Italian patients. False-positive results to PG (16%) were detected in selective AX patients with confirmed PG tolerance. Low and variable sensitivity values observed in a well-defined population with confirmed allergy diagnosis, as well as false-positive results to PG, suggest that ImmunoCAP® is a diagnostic tool with relevant limitations in the evaluation of subjects with type I hypersensitivity reactions to penicillins.  相似文献   

12.
About 50–70% of patients allergic to birch pollen suffer from sensitization after apple ingestion. Apple allergenicity was established in only few varieties. Studies were performed on apple fruits of 21 traditional and nine modern varieties organically, intensively, or integratively produced. The aim of the study was to assess whether the factors like cultivation method, maturity stage, genotype, or type of tissue place an impact on the allergenic potential of apples. To answer these questions, we used semiquantitative real-time PCR, ELISA, and immunoblotting. Apple allergen genes present divergent expression across apple cultivars. Expression of the Mal d 1.06A correlates with the Mal d 1 level and is affected by the cultivation method and maturity of the fruit. The content of the main allergen Mal d 1 varied widely across cultivars. Interestingly, in our study, the Gala variety presented a low Mal d 1 concentration regardless of the cultivation method. Based on the Mal d 1.06A expression, the Mal d 1 protein content, and the immunoreactivity assay, the Kandil Sinap, Kosztela, Rumianka from Alma-Ata, Kantówka Gdańska, Reinette Coulon, and Gala cultivars emerged as potentially hypoallergenic apple cultivars. Our study allowed distinguishing between potentially low, medium, and highly allergenic varieties.  相似文献   

13.
14.
People suffering from allergies can be treated with repeated injections of increasing amounts of a specific allergen. This type of specific immunotherapy is currently the only way to treat the underlying pathological immune response associated with an allergy. The approach can afford long‐lasting protection, but the process takes 3–5 years, can produce allergic reactions, and in severe cases treatment is often aborted due to anaphylaxis. However, treatment can be optimized with the use of specific adjuvants that modify the immune response, its duration, and that increase the production of the correct type of antibodies. In the pursuit of such adjuvants, two new trivalent acetylated β‐(1→2)‐linked mannobioses based on a previously discovered lead molecule were prepared. The new molecules, along with the previously developed lead, were investigated by rigorous NMR and molecular modeling experiments in order to elucidate their behavior and preferred conformations in solution. Furthermore, the molecules were subjected to a biological investigation in which their immunostimulatory properties were evaluated by assessing their effect on the production of TH2‐type cytokine interleukin‐4 (IL‐4) and Treg pro‐inflammatory cytokine tumor necrosis factor (TNF). Treatment of peripheral mononuclear blood cell cultures from patients suffering from birch allergy with birch allergen Bet v induced a strong IL‐4 response, whereas the same treatment together with the trivalent acetylated mannobioses caused significant suppression of the induced IL‐4.  相似文献   

15.
Mast cells are tissue-resident immune cells that function in both innate and adaptive immunity through the release of both preformed granule-stored mediators, and newly generated proinflammatory mediators that contribute to the generation of both the early and late phases of the allergic inflammatory response. Although mast cells can be activated by a vast array of mediators to contribute to homeostasis and pathophysiology in diverse settings and contexts, in this review, we will focus on the canonical setting of IgE-mediated activation and allergic inflammation. IgE-dependent activation of mast cells occurs through the high affinity IgE receptor, FcεRI, which is a multimeric receptor complex that, once crosslinked by antigen, triggers a cascade of signaling to generate a robust response in mast cells. Here, we discuss FcεRI structure and function, and describe established and emerging roles of the β subunit of FcεRI (FcεRIβ) in regulating mast cell function and FcεRI trafficking and signaling. We discuss current approaches to target IgE and FcεRI signaling and emerging approaches that could target FcεRIβ specifically. We examine how alternative splicing of FcεRIβ alters protein function and how manipulation of splicing could be employed as a therapeutic approach. Targeting FcεRI directly and/or IgE binding to FcεRI are promising approaches to therapeutics for allergic inflammation. The characteristic role of FcεRIβ in both trafficking and signaling of the FcεRI receptor complex, the specificity to IgE-mediated activation pathways, and the preferential expression in mast cells and basophils, makes FcεRIβ an excellent, but challenging, candidate for therapeutic strategies in allergy and asthma, if targeting can be realized.  相似文献   

16.
DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.  相似文献   

17.
Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 are receptors that act in co-stimulatory and coinhibitory immune responses. Signaling the PD-1/PD-L1 or PD-L2 pathway is essential to regulate the inflammatory responses to infections, autoimmunity, and allergies, and it has been extensively studied in cancer. Allergic diseases include asthma, rhinoconjunctivitis, atopic dermatitis, drug allergy, and anaphylaxis. These overactive immune responses involve IgE-dependent activation and increased CD4+ T helper type 2 (Th2) lymphocytes. Recent studies have shown that PD-L1 and PD-L2 act to regulate T-cell activation and function. However, the main role of PD-1 and its ligands is to balance the immune response; however, the inflammatory process of allergic diseases is poorly understood. These immune checkpoint molecules can function as a brake or a kick-start to regulate the adaptive immune response. These findings suggest that PD-1 and its ligands may be a key factor in studying the exaggerated response in hypersensitivity reactions in allergies. This review summarizes the current understanding of the role of PD-1 and PD-L1 and PD-L2 pathway regulation in allergic diseases and how this immunomodulatory pathway is currently being targeted to develop novel therapeutic immunotherapy.  相似文献   

18.
19.
The IL-4 and IL-13 cytokine pathways play integral roles in stimulating IgE inflammation, with the IL-4 cytokine being a major cytokine in the etiology of thunderstorm asthma, atopic dermatitis, and allergic rhinitis. The increasing prevalence of thunderstorm asthma in the younger population and the lessening efficacy of corticosteroids and other anti-inflammatories has created a need for more effective pharmaceuticals. This review summarizes the IL-4 and IL-13 pathways while highlighting and discussing the current pathway inhibitors aimed at treating thunderstorm asthma and atopic dermatitis, as well as the potential efficacy of peptide therapeutics in this field.  相似文献   

20.
Storage mites (SM) may induce allergic respiratory symptoms in sensitized individuals, in both rural and urban settings. The relationship among specific IgE reactions to determined groups of SM allergens in the coincident asthma pheno-endotypes has not yet been investigated. We aimed to study a Precision Allergy Molecular Diagnosis (PAMD@) model to depict the SM molecular profile in individuals presenting with Type-2 inflammation, in two different (moderate and severe) asthma phenotypes. A customized PAMD@ panel, including SM allergens and their concurrent protein allergenic characterization was investigated. Mite group 2 allergens were most frequently recognized, including Lep d 2 (83.45%), followed by Gly d 2 (69.17%) and Tyr p 2 (47,37%), in 133/164 asthmatic subjects. Blo t 5 and Blo t 21 exhibited significant higher titres in both asthma groups. Although relevant mite group 2 allergens cross-reactivity is suggested, individualized sensitization patterns were relevantly identified. The present PAMD@ panel confirmed the dominance of mite group 2 allergens in moderate-to-severe T2 asthmatics. A broadly heterogeneous molecular repertoire of SM allergens was found in all subjects, regardless of their asthma severity. Blomia tropicalis deserves special attention in certain territories, as diagnostic and/or therapeutic approaches merely based on Pyroglyphidae mites may be insufficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号