首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
N-(4-((3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)selanyl)phenyl)acetamide (5), C19H15NO3Se, was prepared in two steps from 4,4′-diselanediyldianiline (3) via reduction and subsequent nucleophilic reaction with 2-methyl-3-bromo-1,4-naphthalenedione, followed by acetylation with acetic anhydride. The cytotoxicity was estimated against 158N and 158JP oligodendrocytes and the redox profile was also evaluated using different in vitro assays. The technique of single-crystal X-ray diffraction is used to confirm the structure of compound 5. The enantiopure 5 crystallizes in space group P21 with Flack parameter 0.017 (8), exhibiting a chiral layered absolute structure. Molecular structural studies showed that the crystal structure is foremost stabilized by N-H···O and relatively weak C-H···O contacts between molecules, and additionally stabilized by weak C-H···π and Se···N interactions. Hirshfeld surface analysis is used to quantitatively investigate the noncovalent interactions that stabilize crystal packing. Framework energy diagrams were used to graphically represent the stabilizing interaction energies for crystal packing. The analysis of the energy framework shows that the interactions energies of and C-H···π and C-O···π are primarily dispersive and are the crystal’s main important forces. Density functional theory (DFT) calculations were used to determine the compound’s stability, chemical reactivity, and other parameters by determining the HOMO-LUMO energy differences. The determination of its optimized surface of the molecular electrostatic potential (MEP) was also carried out. This study was conducted to demonstrate both the electron-rich and electron-poor sites.  相似文献   

2.
Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer‐related protease urokinase‐type plasminogen activator (uPA), we observed a glycine residue that has a positive ? dihedral angle when bound to the target. We hypothesized that replacing it with a D ‐amino acid, which favors positive ? angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D ‐serine in the bicyclic peptide indeed improved inhibitory activity (1.75‐fold) and stability (fourfold). X‐ray‐structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ? angles are found in many protein‐bound peptides. These results suggest that the glycine‐to‐D ‐amino acid mutagenesis strategy could be broadly applied.  相似文献   

3.
    
We have determined the binding strengths between nucleotides of adenine, thymine, guanine and cytosine in homogeneous single stranded DNAs and homo-octapeptides consisting of 20 common amino acids. We use a bead-based fluorescence assay for these measurements in which octapeptides are immobilized on the bead surface and ssDNAs are in solutions. Comparative analyses of the distribution of the binding energies reveal unique binding strength patterns assignable to each DNA nucleotide and amino acid originating from the chemical structures. Pronounced favorable (such as Arg-G, etc.) and unfavorable (such as Ile-T, etc.) binding interactions can be identified in selected groups of amino acid and nucleotide pairs that could provide basis to elucidate energetics of amino-acid-nucleotide interactions. Such interaction selectivity, specificity and polymorphism establish the contributions from DNA backbone, DNA bases, as well as main chain and side chain of the amino acids.  相似文献   

4.
5.
In order to achieve accurate determination of the local hydrophobicity increases in peptide sequences produced by incorporation of trifluoromethylated amino acids (TfmAAs), the chromatographic hydrophobicity indexes (?0) of three series of tripeptides containing three unnatural trifluoromethylated amino acids have been measured and compared with those of their non‐fluorinated analogues. The hydrophobic contribution of each fluorinated amino acid was quantified by varying the position and the protection of (R)‐ and (S)‐α‐trifluoromethylalanine (TfmAla), (R)‐trifluoromethylcysteine (TfmCys), and (S)‐trifluoromethionine (TFM) in a short peptide sequence. As a general trend, strong increases in hydrophobicity were precisely measured, even exceeding the high hydrophobic contribution of the natural amino acid isoleucine. This study validates the incorporation of trifluoromethylated amino acids into peptide sequences as a rational strategy for the fine‐tuning of hydrophobic peptide–protein interactions.  相似文献   

6.
    
Protein phosphatase-1 (PP1)-disrupting peptides (PDPs) are selective chemical modulators of PP1 that liberate the active PP1 catalytic subunit from regulatory proteins; thus allowing the dephosphorylation of nearby substrates. We have optimized the original cell-active PDP3 for enhanced stability, and obtained insights into the chemical requirements for stabilizing this 23-mer peptide for cellular applications. The optimized PDP-Nal was used to dissect the involvement of PP1 in the MAPK signaling cascade. Specifically, we have demonstrated that, in human osteosarcoma (U2OS) cells, phosphoMEK1/2 is a direct substrate of PP1, whereas dephosphorylation of phosphoERK1/2 is indirect and likely mediated through enhanced tyrosine phosphatase activity after PDP-mediated PP1 activation. Thus, as liberators of PP1 activity, PDPs represent a valuable tool for identifying the substrates of PP1 and understanding its role in diverse signaling cascades.  相似文献   

7.
    
The results of structural studies on a series of halogen-substituted derivatives of 2-deoxy-D-glucose (2-DG) are reported. 2-DG is an inhibitor of glycolysis, a metabolic pathway crucial for cancer cell proliferation and viral replication in host cells, and interferes with D-glucose and D-mannose metabolism. Thus, 2-DG and its derivatives are considered as potential anticancer and antiviral drugs. X-ray crystallography shows that a halogen atom present at the C2 position in the pyranose ring does not significantly affect its conformation. However, it has a noticeable effect on the crystal structure. Fluorine derivatives exist as a dense 3D framework isostructural with the parent compound, while Cl- and I-derivatives form layered structures. Analysis of the Hirshfeld surface shows formation of hydrogen bonds involving the halogen, yet no indication for the existence of halogen bonds. Density functional theory (DFT) periodic calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings. NMR studies in the solution show that most of the compounds do not display significant differences in their anomeric equilibria, and that pyranose ring puckering is similar to the crystalline state. For 2-deoxy-2-fluoro-D-glucose (2-FG), electrostatic interaction energies between the ligand and protein for several existing structures of pyranose 2-oxidase were also computed. These interactions mostly involve acidic residues of the protein; single amino-acid substitutions have only a minor impact on binding. These studies provide a better understanding of the structural chemistry of halogen-substituted carbohydrates as well as their intermolecular interactions with proteins determining their distinct biological activity.  相似文献   

8.
9.
Thymosin β4Xen, a 43 residue peptide recently isolated from Xenopus laevis, was synthesized by automatic solid phase procedure and compared with the natural product, isolated from the ovaries of Xenopus laevis For the synthesis N-methylpyrrolidone was chosen as solvent instead of the commonly used dimethylformamide because this solvent seems to be superior for solid phase peptide synthesis due to the favorable swelling properties of the polystyrene resin in this solvent and its dissolving power against the resin-bound peptide which reduces intermolecular aggregation. With acetic anhydride/pyridine and hydroxysuccinimide acetate two different acetylation reagents were tested for the final acetylation step, which gave both comparable results as shown by analytical HPLC investigations. The crude synthetic product was purified by HPLC, confirmed by ASA and LD-MS and was identical compared with the natural thymosin β4Xen  相似文献   

10.
    
The study investigates the antitumor effect of two cationic peptides, R-DIM-P-LF11-215 (RDP215) and the D-amino acid variant 9D-R-DIM-P-LF11-215 (9D-RDP215), targeting the negatively charged lipid phosphatidylserine (PS) exposed by cancer cells, such as of melanoma and glioblastoma. Model studies mimicking cancer and non-cancer membranes revealed the specificity for the cancer-mimic PS by both peptides with a slightly stronger impact by the D-peptide. Accordingly, membrane effects studied by DSC, leakage and quenching experiments were solely induced by the peptides when the cancer mimic PS was present. Circular dichroism revealed a sole increase in β-sheet conformation in the presence of the cancer mimic for both peptides; only 9D-RDP215 showed increased structure already in the buffer. Ex vitro stability studies by SDS-PAGE as well as in vitro with melanoma A375 revealed a stabilizing effect of D-amino acids in the presence of serum, which was also confirmed in 2D and 3D in vitro experiments on glioblastoma LN-229. 9D-RDP215 was additionally able to pass a BBB model, whereupon it induced significant levels of cell death in LN-229 spheroids. Summarized, the study encourages the introduction of D-amino acids in the design of antitumor peptides for the improvement of their stable antitumor activity.  相似文献   

11.
聚丙烯熔喷驻极过滤材料表面静电势的研究   总被引:1,自引:1,他引:1  
将未经过驻极处理的聚丙烯熔喷过滤材料进行电晕驻极处理,通过测定聚丙烯熔喷驻极滤料的过滤效率和表面静电势,分析滤料表面正负电荷的分布以及表面静电势与滤料过滤效率的关系.结果表明:滤料表面的静电势呈现随机的正负分布,并且随着滤料表面平均静电势的提高,滤料的过滤效率提高.  相似文献   

12.
    
In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.  相似文献   

13.
We previously reported the design of several cyclic decapeptides based on a generic scaffold that achieved favorable oral bioavailability and exposure. With the goal to further investigate the potential of this approach, we describe herein the effect of mono‐ and difunctionalization of this scaffold. A series of cyclic decapeptides were therefore subjected to a range of in vitro assays and pharmacokinetic (PK) studies to investigate whether the introduction of polar or charged groups could be tolerated by the “engineered” scaffold while maintaining good PK profiles. Whereas the introduction of charged amino acids proved—besides maintaining low clearance—to conceal the inherent PK properties of the scaffold, the introduction of polar amino acids (i.e., threonine and pyridyl alanine) led to several cyclic decapeptides exhibiting excellent PK profiles together with a solubility that was significantly improved relative to that of previously reported cyclic decapeptides.  相似文献   

14.
    
Arg-Gly-Asp (RGD) peptides represent the most outstanding recognition motif involved in cell adhesion that binds to the αvβ3 integrin, which has been targeted for cancer therapy. Various RGD-containing peptides and peptidomimetics have been designed and synthesized to selectively inhibit this integrin. In this study, the synthesis of RGD-based peptides through the incorporation of the short bioactive peptide Phe-Ala-Lys-Leu-Phe (FAKLF) at the C and N termini of RGD has been achieved by using a solid-phase peptide synthesis approach. The peptides were purified by means of preparative RP-HPLC and their structures were confirmed through HRMS (ESI). The MTT assay revealed that the RGD and FAKLF peptides inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, with IC50 values of 3000 and 500 ng mL−1, respectively. Interestingly, a drastic improvement was observed in the antiproliferative activity of the combined structures of the FAKLFRGD and RGDFAKLF peptides, leading to IC50 values of 200 and 136.7 ng mL−1, respectively. Meanwhile, based on apoptosis results, the potential of peptides to induce apoptosis, in accordance with their antiproliferative activity, indicated that the RGD and FAKLF peptides, and the peptides synthesized based on their combinations induced cell apoptosis in a dose-dependent manner followed by inhibition of the proliferation of endothelial cells. Moreover, the incorporation of d -leucine increased the induction of apoptosis by these peptides.  相似文献   

15.
The preferred conformations of peptides and proteins are dependent on local interactions that bias the conformational ensemble. The n→π* interaction between consecutive carbonyls promotes compact conformations, including the α-helix and polyproline II helix. In order to further understand the n→π* interaction and to develop methods to promote defined conformational preferences through acyl N-capping motifs, a series of peptides was synthesized in which the electronic and steric properties of the acyl group were modified. Using NMR spectroscopy, van't Hoff analysis of enthalpies, X-ray crystallography, and computational investigations, we observed that more electron-rich donor carbonyls (pivaloyl, iso-butyryl, propionyl) promote stronger n→π* interactions and more compact conformations than acetyl or less electron-rich donor carbonyls (methoxyacetyl, fluoroacetyl, formyl). X-ray crystallography indicates a strong, electronically tunable preference for the α-helix conformation, as observed directly on the φ and ψ torsion angles. Electron-donating acyl groups promote the α-helical conformation, even in the absence of the hydrogen bonding that stabilizes the α-helix. In contrast, electron-withdrawing acyl groups led to more extended conformations. More sterically demanding groups can promote trans amide bonds independent of the electronic effect on n→π* interactions. Chloroacetyl groups additionally promote n→π* interactions through the interaction of the chlorine lone pair with the proximal carbonyl π*. These data provide additional support for an important role of n→π* interactions in the conformational ensemble of disordered or unfolded proteins. Moreover, this work suggests that readily incorporated acyl N-capping motifs that modulate n→π* interactions may be employed rationally to promote conformational biases in peptides, with potential applications in molecular design and medicinal chemistry.  相似文献   

16.
Potential-controlled chromatography is introduced as a new technique for the separation of amino acids and peptides. The principle of potential-controlled chromatography depends on the use of electrically conductive material as the stationary phase of the chromatographic column. Thus from an electrochemical point of view the packed column can be regarded as a packed-bed electrode. The electrical potential of this stationary phase can be controlled by a potentiostat. The separation of amino acid and peptide molecules during their migration through the column depends on their own electric charge on the one hand and on the electrical potential of the stationary phase on the other. The chromatographic separation of some amino acids could be demonstrated.  相似文献   

17.
Analogues of both the nonapeptides, bradykinin and bradykinin potentiating nonapeptide BPP, were synthesized using HYCRAMTM-technique. The bradykinin analogues were assembled by the Boc-, Ddz- and Fmoc-strategy starting with Boc-Arg(Aloc)2-OCr–OH, Ddz-Arg(Mtr)-OCr–OH and Fmoc–Arg(Mtr)-OCr–OH. While Boc- and Ddz-strategy provide peptides in good yield and purity, the Fmoc-strategy leads to a loss of peptide from resin. For simultaneous cleavage from HYCRAMTM-resin and removal of Aloc-side chain protection optimized conditions for catalytic cleavage with Pd° were developed. As shown by the synthesis of BPPanalogues the HYCRAMTM-linker and the chlorotrityl resin allow the assembly of peptides with the C-terminal sequence Pro-Pro by preventing dioxopiperazine formation. Since the BPP sequence contains the tripeptide Trp-X-Arg an intramolecular migration of the NG-protecting group to the indole ring under conditions used for its removal had to be avoided. By the use of HYCRAMTM-linker in combination with Aloc protection for the guanidino group and Ddz for Nαno modification of Trp occurred. HYCRAMTM-technology in combination with Boc-, Ddz- or Aloc/All-protecting groups facilitates the synthesis of peptides with such very labile amino acids like cis-4-hydroxyproline.  相似文献   

18.
Despite their enormous diversity in biological function and structure, peptides and proteins are endowed with properties that have induced and stimulated the development of peptidomimetics. Clearly, peptides can be considered as the "stem" of a phylogenetic molecular development tree from which branches of oligomeric peptidomimetics such as peptoids, peptidosulfonamides, urea peptidomimetics, as well as β-peptides have sprouted. It is still a challenge to efficiently synthesize these oligomeric species, and study their structural and biological properties. Combining peptides and peptidomimetics led to the emergence of peptide-peptidomimetic hybrids in which one or more (proteinogenic) amino acid residues have been replaced with these mimetic residues. In scan-like approaches, the influence of these replacements on biological activity can then be studied, to evaluate to what extent a peptide can be transformed into a peptidomimetic structure while maintaining, or even improving, its biological properties. A central issue, especially with the smaller peptides, is the lack of secondary structure. Important approaches to control secondary structure include the introduction of α,α-disubstituted amino acids, or (di)peptidomimetic structures such as the Freidinger lactam. Apart from intra-amino acid constraints, inter-amino acid constraints for formation of a diversity of cyclic peptides have shaped a thick branch. Apart from the classical disulfide bridges, the repertoire has been extended to include sulfide and triazole bridges as well as the single-, double- and even triple-bond replacements, accessible by the extremely versatile ring-closing alkene/alkyne metathesis approaches. The latter approach is now the method of choice for the secondary structure that presents the greatest challenge for structural stabilization: the α-helix.  相似文献   

19.
Herein we provide a guide for adapting the tools developed for protein X-ray crystallography to study the structures and supramolecular assembly of peptides. Peptide crystallography involves selecting a suitable peptide, crystallizing the peptide, collecting X-ray diffraction data, processing the diffraction data, determining the crystallographic phases and generating an electron density map, building and refining models, and depositing the crystallographic structure in the Protein Data Bank (PDB). Advances in technology make this process easy for a newcomer to adopt. This paper describes techniques for determining the X-ray crystallographic structures of peptides: incorporation of amino acids containing heavy atoms for crystallographic phase determination, commercially available kits to crystallize peptides, modern techniques for X-ray crystallographic data collection, and free user-friendly software for data processing and producing a crystallographic structure.  相似文献   

20.
    
Endowment of pH responsivity to anticancer peptides is a promising approach to achieve better selectivity to cancer tissues. In this research, a template peptide was designed based on magainin 2, an antimicrobial peptide with anticancer activity, and a series of peptides were designed by replacing different numbers of lysine with the unnatural amino acid, 2,3diaminopropionic acid (Dap), which has a positive charge at weakly acidic pH in cancer tissues, but is neutral at physiological pH 7.4. These Dap-containing peptides are expected to interact more strongly with tumor cells than with normal cells because 1) weakly acidic conditions form in tumors, and 2) the membrane of tumor cells is more anionic than that of normal cells. Although all examined peptides showed potent cytotoxicities to multidrug-resistant cancer cells at a weakly acidic pH (ED50≈5 μm ), the toxicity decreased with an increase in the number of Dap at pH 7.4 (8 Dap residues resulted in ED50≈60 μm ). Furthermore, the introduction of Dap reduced cytotoxicity against normal cells. Thus, Dap led to significantly improved cancer targeting due to a pH-dependent charge shift. Fluorescence imaging and model membrane experiments supported this charge-shift model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号