首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.  相似文献   

2.
Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.  相似文献   

3.
The class of tetrapyrrol “coordination complexes” called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO2-dependent manner—thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on “bioflavonoids” as HO inducers, shown to cause amelioration of severe inflammatory diseases.  相似文献   

4.
The heme oxygenase (HO) system involves three isoforms of this enzyme, HO-1, HO-2, and HO-3. The three of them display the same catalytic activity, oxidating the heme group to produce biliverdin, ferrous iron, and carbon monoxide (CO). HO-1 is the isoform most widely studied in proinflammatory diseases because treatments that overexpress this enzyme promote the generation of anti-inflammatory products. However, neonatal jaundice (hyperbilirubinemia) derived from HO overexpression led to the development of inhibitors, such as those based on metaloproto- and meso-porphyrins inhibitors with competitive activity. Further, non-competitive inhibitors have also been identified, such as synthetic and natural imidazole-dioxolane-based, small synthetic molecules, inhibitors of the enzyme regulation pathway, and genetic engineering using iRNA or CRISPR cas9. Despite most of the applications of the HO inhibitors being related to metabolic diseases, the beneficial effects of these molecules in immune-mediated diseases have also emerged. Different medical implications, including cancer, Alzheimer´s disease, and infections, are discussed in this article and as to how the selective inhibition of HO isoforms may contribute to the treatment of these ailments.  相似文献   

5.
The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study’s purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO’s effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO’s implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO’s contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment.  相似文献   

6.
Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)–estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα–PGC-1α–ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα–PGC-1α–ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.  相似文献   

7.
Chorioamnionitis (CHORIO), placental insufficiency, and preterm birth are well-known antecedents of perinatal brain injury (PBI). Heme-oxygenase-1 (HO-1) is an important inducible enzyme in oxidative and inflammatory conditions. In the brain, HO-1 and the iron regulatory receptor, transferrin receptor-1 (TfR1), are known to be involved in iron homeostasis, oxidative stress, and cellular adaptive mechanisms. However, the role of HO pathway in the pathophysiology of PBI has not been previously studied. In this study, we set out to define the ontogeny of the HO pathway in the brain and determine if CHORIO changed its normal developmental regulation. We also aimed to determine the role of HO-1/TfR1 in CHORIO-induced neuroinflammation and peripheral inflammation in a clinically relevant rat model of PBI. We show that HO-1, HO-2, and TfR1 expression are developmentally regulated in the brain during the perinatal period. CHORIO elevates HO-1 and TfR1 mRNA expression in utero and in the early postnatal period and results in sustained increase in HO-1/TfR1 ratios in the brain. This is associated with neuroinflammatory and peripheral immune phenotype supported by a significant increase in brain mononuclear cells and peripheral blood double negative T cells suggesting a role of HO-1/TfR1 pathway dysregulation in CHORIO-induced neuroinflammation.  相似文献   

8.
Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN—sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer’s disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.  相似文献   

9.
Recent studies implicate astrocytes in Alzheimer’s disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this “active” role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.  相似文献   

10.
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM). Studies have also shown that canagliflozin directly acts on endothelial cells (ECs). Since heme oxygenase-1 (HO-1) is an established modulator of EC function, we investigated if canagliflozin regulates the endothelial expression of HO-1, and if this enzyme influences the biological actions of canagliflozin in these cells. Treatment of human ECs with canagliflozin stimulated a concentration- and time-dependent increase in HO-1 that was associated with a significant increase in HO activity. Canagliflozin also evoked a concentration-dependent blockade of EC proliferation, DNA synthesis, and migration that was unaffected by inhibition of HO-1 activity and/or expression. Exposure of ECs to a diabetic environment increased the adhesion of monocytes to ECs, and this was attenuated by canagliflozin. Knockdown of HO-1 reduced the anti-inflammatory effect of canagliflozin which was restored by bilirubin but not carbon monoxide. In conclusion, this study identified canagliflozin as a novel inducer of HO-1 in human ECs. It also found that HO-1-derived bilirubin contributed to the anti-inflammatory action of canagliflozin, but not the anti-proliferative and antimigratory effects of the drug. The ability of canagliflozin to regulate HO-1 expression and EC function may contribute to the clinical profile of the drug.  相似文献   

11.
Dysbiosis contributes to Alzheimer’s disease (AD) pathogenesis, and oral bacteriotherapy represents a promising preventative and therapeutic opportunity to remodel gut microbiota and to delay AD onset and progression by reducing neuroinflammation and amyloid and tau proteins aggregation. Specifically, SLAB51 multi-strain probiotic formulation positively influences multiple neuro-chemical pathways, but exact links between probiotics oral consumption and cerebral beneficial effects remain a gap of knowledge. Considering that cerebral blood oxygenation is particularly reduced in AD and that the decreased neurovascular function contributes to AD damages, hypoxia conditioning represents an encouraging strategy to cure diseases of the central nervous system. In this work, 8-week-old 3xTg-AD and wild-type mice were chronically supplemented with SLAB51 to evaluate effects on hypoxia-inducible factor-1α (HIF-1α), a key molecule regulating host-microbial crosstalk and a potential target in neurodegenerative pathologies. We report evidence that chronic supplementation with SLAB51 enhanced cerebral expression of HIF-1α and decreased levels of prolyl hydroxylase 2 (PHD2), an oxygen dependent regulator of HIF-1α degradation; moreover, it successfully counteracted the increase of inducible nitric oxide synthase (iNOS) brain expression and nitric oxide plasma levels in AD mice. Altogether, the results demonstrate an additional mechanism through which SLAB51 exerts neuroprotective and anti-inflammatory effects in this model of AD.  相似文献   

12.
Neurons are extremely vulnerable cells that tightly rely on the brain’s highly dynamic and complex vascular network that assures an accurate and adequate distribution of nutrients and oxygen. The neurovascular unit (NVU) couples neuronal activity to vascular function, controls brain homeostasis, and maintains an optimal brain microenvironment adequate for neuronal survival by adjusting blood-brain barrier (BBB) parameters based on brain needs. The NVU is a heterogeneous structure constituted by different cell types that includes pericytes. Pericytes are localized at the abluminal side of brain microvessels and contribute to NVU function. Pericytes play essential roles in the development and maturation of the neurovascular system during embryogenesis and stability during adulthood. Initially, pericytes were described as contractile cells involved in controlling neurovascular tone. However, recent reports have shown that pericytes dynamically respond to stress induced by injury upon brain diseases, by chemically and physically communicating with neighboring cells, by their immune properties and by their potential pluripotent nature within the neurovascular niche. As such, in this paper, we would like to review the role of pericytes in NVU remodeling, and their potential as targets for NVU repair strategies and consequently neuroprotection in two pathophysiologically distinct brain disorders: ischemic stroke and Alzheimer’s disease (AD).  相似文献   

13.
Alzheimer’s disease (AD) is a form of dementia characterized by progressive memory decline and cognitive dysfunction. With only one FDA-approved therapy, effective treatment strategies for AD are urgently needed. In this study, we found that microRNA-485-3p (miR-485-3p) was overexpressed in the brain tissues, cerebrospinal fluid, and plasma of patients with AD, and its antisense oligonucleotide (ASO) reduced Aβ plaque accumulation, tau pathology development, neuroinflammation, and cognitive decline in a transgenic mouse model of AD. Mechanistically, miR-485-3p ASO enhanced Aβ clearance via CD36-mediated phagocytosis of Aβ in vitro and in vivo. Furthermore, miR-485-3p ASO administration reduced apoptosis, thereby effectively decreasing truncated tau levels. Moreover, miR-485-3p ASO treatment reduced secretion of proinflammatory cytokines, including IL-1β and TNF-α, and eventually relieved cognitive impairment. Collectively, our findings suggest that miR-485-3p is a useful biomarker of the inflammatory pathophysiology of AD and that miR-485-3p ASO represents a potential therapeutic candidate for managing AD pathology and cognitive decline.  相似文献   

14.
Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes.  相似文献   

15.
Alzheimer’s disease (AD) is the most common form of dementia characterized by cognitive dysfunctions. Pharmacological interventions to slow the progression of AD are intensively studied. A potential direction targets neuronal sigma-1 receptors (S1Rs). S1R ligands are recognized as promising therapeutic agents that may alleviate symptom severity of AD, possibly via preventing amyloid-β-(Aβ-) induced neurotoxicity on the endoplasmic reticulum stress-associated pathways. Furthermore, S1Rs may also modulate adult neurogenesis, and the impairment of this process is reported to be associated with AD. We aimed to investigate the effects of two S1R agonists, dimethyltryptamine (DMT) and PRE084, in an Aβ-induced in vivo mouse model characterizing neurogenic and anti-neuroinflammatory symptoms of AD, and the modulatory effects of S1R agonists were analyzed by immunohistochemical methods and western blotting. DMT, binding moderately to S1R but with high affinity to 5-HT receptors, negatively influenced neurogenesis, possibly as a result of activating both receptors differently. In contrast, the highly selective S1R agonist PRE084 stimulated hippocampal cell proliferation and differentiation. Regarding neuroinflammation, DMT and PRE084 significantly reduced Aβ1–42-induced astrogliosis, but neither had remarkable effects on microglial activation. In summary, the highly selective S1R agonist PRE084 may be a promising therapeutic agent for AD. Further studies are required to clarify the multifaceted neurogenic and anti-neuroinflammatory roles of these agonists.  相似文献   

16.
17.
Iron accumulates in the ageing brain and in brains with neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Down syndrome (DS) dementia. However, the mechanisms of iron deposition and regional selectivity in the brain are ill-understood. The identification of several proteins that are involved in iron homeostasis, transport, and regulation suggests avenues to explore their function in neurodegenerative diseases. To uncover the molecular mechanisms underlying this association, we investigated the distribution and expression of these key iron proteins in brain tissues of patients with AD, DS, PD, and compared them with age-matched controls. Ferritin is an iron storage protein that is deposited in senile plaques in the AD and DS brain, as well as in neuromelanin-containing neurons in the Lewy bodies in PD brain. The transporter of ferrous iron, Divalent metal protein 1 (DMT1), was observed solely in the capillary endothelium and in astrocytes close to the ventricles with unchanged expression in PD. The principal iron transporter, ferroportin, is strikingly reduced in the AD brain compared to age-matched controls. Extensive blood vessel damage in the basal ganglia and deposition of punctate ferritin heavy chain (FTH) and hepcidin were found in the caudate and putamen within striosomes/matrix in both PD and DS brains. We suggest that downregulation of ferroportin could be a key reason for iron mismanagement through disruption of cellular entry and exit pathways of the endothelium. Membrane damage and subsequent impairment of ferroportin and hepcidin causes oxidative stress that contributes to neurodegeneration seen in DS, AD, and in PD subjects. We further propose that a lack of ferritin contributes to neurodegeneration as a consequence of failure to export toxic metals from the cortex in AD/DS and from the substantia nigra and caudate/putamen in PD brain.  相似文献   

18.
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer’s disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.  相似文献   

19.
The eye has a complex and metabolically active neurovascular system. Repeated light injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mitochondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-related macular degeneration (AMD), and Alzheimer’s disease (AD), resulting in neuronal cell death. Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.  相似文献   

20.
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer’s disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ’s toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号