首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.  相似文献   

4.
The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as LinCD11bLy6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment.  相似文献   

5.
The effect of Mfa1 fimbriae of Porphyromonas gingivalis on the progression of bone resorption remains unclear, especially compared with another fimbriae, FimA. We investigated the effect of Mfa1 on osteoclastogenesis together with FimA. We also investigated the role of Toll-like receptors (TLRs) in Mfa1 recognition during osteoclast differentiation. Receptor activator of nuclear factor κβ ligand (RANKL)-prestimulated RAW264 cells were used to examine the effects of purified Mfa1 fimbriae. The number of osteoclasts was examined by tartrate-resistant acid phosphate (TRAP) staining, osteoclast activation was investigated by bone resorption assays, and gene expression of differentiation markers was examined by quantitative real-time PCR. Transfection of Tlr2 and Tlr4 siRNAs into RAW264 cells was also employed and their role in Mfa1 recognition was investigated. Mfa1 effectively induced the formation of TRAP-positive multinucleated cells and activated osteoclasts. Mfa1 also increased gene expression of Acp5, Mmp9, and Ctsk in RANKL-prestimulated RAW264 cells compared with the control. The osteoclastogenesis induced by Mfa1 was significantly decreased in cells transfected with Tlr2 or Tlr4 siRNAs compared with control siRNA. Our results revealed the role of Mfa1 fimbriae in osteoclastogenesis that may contribute to the partial elucidation of the mechanisms of periodontal disease progression and the development of new therapeutic strategies.  相似文献   

6.
Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.  相似文献   

7.
This bedside-to-bench study aimed to systematically investigate the value of applying BMP2-loaded calcium phosphate cement (BMP2-CPC) in the restoration of large-scale alveolar bone defects. Compared to deproteinized bovine bone (DBB), BMP2-CPC was shown to be capable of inducing a favorable pattern of bone regeneration and bone remodeling accompanied by active osteoclastogenesis and optimized biomaterial resorption when applied in reconstructive periodontally accelerated osteogenic orthodontics (PAOO) surgery. To verify the regulatory role of osteoclasts in the BMP2-CPC-induced pattern of bone regeneration, in vitro and in vivo studies were designed to elucidate the underlying mechanism. Our results revealed that osteoclasts played a multifaceted role (facilitating osteogenesis, bone remodeling and biomaterial resorption) in the BMP2-CPC-induced bone regeneration. Osteoclasts contributed to the osteogenic differentiation of mesenchymal stem cells (MSCs) by secreting calcium ions, CTHRC1 and PDGF-B. Moreover, the increased osteoclasts promoted the remodeling of new bone and BMP2-CPC resorption, leading to a harmonized replacement of biomaterials with mature bone. In conclusion, the in vitro and in vivo experimental results corresponded with the clinical results and showed the optimized properties of BMP2-CPC in activating osteoclast-driven bone regeneration and remodeling, thus indicating the highly promising prospects of BMP2-CPC as an ideal therapeutic for alveolar bone defects.  相似文献   

8.
Osteoblasts and osteoclasts are major cellular components in the bone microenvironment and they play a key role in the bone turnover cycle. Many risk factors interfere with this cycle and contribute to bone-wasting diseases that progressively destroy bone and markedly reduce quality of life. Melatonin (N-acetyl-5-methoxy-tryptamine) has demonstrated intriguing therapeutic potential in the bone microenvironment, with reported effects that include the regulation of bone metabolism, acceleration of osteoblastogenesis, inhibition of osteoclastogenesis and the induction of apoptosis in mature osteoclasts, as well as the suppression of osteolytic bone metastasis. This review aims to shed light on molecular and clinical evidence that points to possibilities of melatonin for the treatment of both osteoporosis and osteolytic bone metastasis. It appears that the therapeutic qualities of melatonin supplementation may enable existing antiresorptive osteoporotic drugs to treat osteolytic metastasis.  相似文献   

9.
Homeostasis is a self-regulatory dynamic process that maintains a stable internal environment in the human body. These regulations are essential for the optimal functioning of enzymes necessary for human health. Homeostasis elucidates disrupted mechanisms leading to the development of various pathological conditions caused by oxidative stress. In our work, we discuss redox homeostasis and salivary antioxidant activity during healthy periods and in periods of disease: dental carries, oral cavity cancer, periodontal diseases, cardiovascular diseases, diabetes mellitus, systemic sclerosis, and pancreatitis. The composition of saliva reflects dynamic changes in the organism, which makes it an excellent tool for determining clinically valuable biomarkers. The oral cavity and saliva may form the first line of defense against oxidative stress. Analysis of salivary antioxidants may be helpful as a diagnostic, prognostic, and therapeutic marker of not only oral, but also systemic health.  相似文献   

10.
A large number of experimental studies has demonstrated that angiotensin II (Ang II) is involved in key events of the inflammatory process. This study aimed to evaluate the role of Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors on periodontitis. Methods: Experimental periodontitis was induced by placing a 5.0 nylon thread ligature around the second upper left molar of AT1 mice, no-ligature or ligature (AT1-NL and AT1-L), AT2 (AT2-NL or AT2-L) and wild type (WT-NL or L). Alveolar bone loss was scanned using Micro-CT. Cytokines, peptides and enzymes were analyzed from gingival tissues by Elisa and RT-PCR. Results: The blockade of AT1 receptor resulted in bone loss, even in healthy animals. Ang II receptor blockades did not prevent linear bone loss. Ang II and Ang 1-7 levels were significantly increased in the AT2-L (p < 0.01) group compared to AT2-NL and AT1-L. The genic expression of the Mas receptor was significantly increased in WT-L and AT2-L compared to (WT-NL and AT2-NL, respectively) and in AT1-L. Conclusions: Our data suggest that the receptor AT1 appears to be important for the maintenance of bone mass. AT2 receptor molecular function in periodontitis appears to be regulated by AT1.  相似文献   

11.
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.  相似文献   

12.
13.
Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.  相似文献   

14.
Postmenopausal osteoporosis is closely associated with excessive osteoclast formation and function, resulting in the loss of bone mass. Osteoclast-targeting agents have been developed to manage this disease. We examined the effects of ciclopirox on osteoclast differentiation and bone resorption in vitro and in vivo. Ciclopirox significantly inhibited osteoclast formation from primary murine bone marrow macrophages (BMMs) in response to receptor activator of nuclear factor kappa B ligand (RANKL), and the expression of genes associated with osteoclastogenesis and function was decreased. The formation of actin rings and resorption pits was suppressed by ciclopirox. Analysis of RANKL-mediated early signaling events in BMMs revealed that ciclopirox attenuates IκBα phosphorylation without affecting mitogen-activated protein kinase activation. Furthermore, the administration of ciclopirox suppressed osteoclast formation and bone loss in ovariectomy-induced osteoporosis in mice and reduced serum levels of osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus. These results indicate that ciclopirox exhibits antiosteoclastogenic activity both in vitro and in vivo and represents a new candidate compound for protection against osteoporosis and other osteoclast-related bone diseases.  相似文献   

15.
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.  相似文献   

16.
The damaging effects of ionizing radiation (IR) on bone mass are well-documented in mice and humans and are most likely due to increased osteoclast number and function. However, the mechanisms leading to inappropriate increases in osteoclastic bone resorption are only partially understood. Here, we show that exposure to multiple fractions of low-doses (10 fractions of 0.4 Gy total body irradiation [TBI]/week, i.e., fractionated exposure) and/or a single exposure to the same total dose of 4 Gy TBI causes a decrease in trabecular, but not cortical, bone mass in young adult male mice. This damaging effect was associated with highly activated bone resorption. Both osteoclast differentiation and maturation increased in cultures of bone marrow-derived macrophages from mice exposed to either fractionated or singular TBI. IR also increased the expression and enzymatic activity of mitochondrial deacetylase Sirtuin-3 (Sirt3)—an essential protein for osteoclast mitochondrial activity and bone resorption in the development of osteoporosis. Osteoclast progenitors lacking Sirt3 exposed to IR exhibited impaired resorptive activity. Taken together, targeting impairment of osteoclast mitochondrial activity could be a novel therapeutic strategy for IR-induced bone loss, and Sirt3 is likely a major mediator of this effect.  相似文献   

17.
Objective: To compare the results of periodontal infrabony lesions treated using nanohydroxyapatite (NcHA) graft with other bone grafts (BGs). Methods: Four electronic databases were searched including PubMed (NLM), Embase (Ovid), Medline, and Dentistry and Oral Sciences (EBSCO). The inclusion criteria included randomised controlled clinical trials (RCTs) and controlled clinical trials (CCTs). The clinical results of NcHA were compared with other BGs. For clinical attachment level (CAL) gain, probing pocket depth (PPD) decrease, and gingival recession (REC) change, weighted averages and forest plots were computed. Results: Seven RCTs fulfilled the selection criteria that were included. When NcHA was compared to other BGs, no clinically significant differences were found in terms of each outcome assessed, except the REC change for synthetic BGs as compared to NcHA. Conclusions: The use of an NcHA graft showed equivalent results compared to other types of BGs. To further validate these findings, future studies are required to compare the NcHA and various BGs over longer time periods and in furcation deficiencies.  相似文献   

18.
Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth’s magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.  相似文献   

19.
Periodontal disease is an inflammatory disease caused by pathogenic oral microorganisms that leads to the destruction of alveolar bone and connective tissues around the teeth. Although many studies have shown that periodontal disease is a risk factor for systemic diseases, such as type 2 diabetes and cardiovascular diseases, the relationship between nonalcoholic fatty liver disease (NAFLD) and periodontal disease has not yet been clarified. Thus, the purpose of this review was to reveal the relationship between NAFLD and periodontal disease based on epidemiological studies, basic research, and immunology. Many cross-sectional and prospective epidemiological studies have indicated that periodontal disease is a risk factor for NAFLD. An in vivo animal model revealed that infection with periodontopathic bacteria accelerates the progression of NAFLD accompanied by enhanced steatosis. Moreover, the detection of periodontopathic bacteria in the liver may demonstrate that the bacteria have a direct impact on NAFLD. Furthermore, Porphyromonas gingivalis lipopolysaccharide induces inflammation and accumulation of intracellular lipids in hepatocytes. Th17 may be a key molecule for explaining the relationship between periodontal disease and NAFLD. In this review, we attempted to establish that oral health is essential for systemic health, especially in patients with NAFLD.  相似文献   

20.
Bone is a highly dynamic tissue that is constantly adapting to micro-changes to facilitate movement. When the balance between bone building and resorption shifts more towards bone resorption, the result is reduced bone density and mineralization, as seen in osteoporosis or osteopenia. Current treatment strategies aimed to improve bone homeostasis and turnover are lacking in efficacy, resulting in the search for new preventative and nutraceutical treatment options. The myokine irisin, since its discovery in 2012, has been shown to play an important role in many tissues including muscle, adipose, and bone. Evidence indicate that irisin is associated with increased bone formation and decreased bone resorption, leading to reduced risk of osteoporosis in post-menopausal women. In addition, low serum irisin levels have been found in individuals with osteoporosis and osteopenia. Irisin targets key signaling proteins, promoting osteoblastogenesis and reducing osteoclastogenesis. The present review summarizes the existing evidence regarding the effects of irisin on bone homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号