首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对传统模型对高分辨率云量时间序列数据适用性差、拟合效果较差以及预测结果准确度低的问题,提出了一种基于小波分解的云量时间序列组合模型预测方法。该方法可以有效提取高分辨率云量时间序列数据的低频趋势序列信息和高频随机序列信息,利用波动特征与随机项扰动纠正,对未来一段时期的云量分布进行预测。试验结果表明,该预测方法改进了传统方法对高分辨率数据适用性较差的问题,能够较为准确地拟合时间序列数据的变化规律,提高了预测准确度,为较长周期的卫星成像数据的选取提供重要的参考依据。  相似文献   

2.
张晗  王霞 《计算机应用研究》2012,29(8):3134-3136
提出一种基于小波分解的网络流量时间序列的分析和预测方法。将非平稳的网络流量时间序列通过小波分解成为多个平稳分量,采用自回归滑动平均方法分别对各平稳分量进行建模,将所有分量的模型进行组合,得到原始非平稳网络流量时间序列的预测模型。在仿真实验中,利用网络流量文库的时间序列数据建立了预测模型,并对其进行独立测试检验。仿真结果表明,本预测方法提高了网络流量时间序列的预测准确率,是一种有效、稳健的网络流量预测方法。  相似文献   

3.
为了扩大时空图卷积网络的预测范围,将它应用在关联关系未知场景下的多变量时间序列预测问题,提出一种附加图学习层的时空图卷积网络预测方法(GLB-STGCN)。图学习层借助余弦相似度从时间序列中学习图邻接矩阵,通过图卷积网络捕捉多变量之间的相互影响,最后通过多核时间卷积网络捕捉时间序列的周期性特征,实现对多变量的精准预测。为验证GLB-STGCN的有效性,使用天文、电力、交通和经济四个领域的公共数据集和一个工业场景生产数据集进行预测实验,结果表明GLB-STGCN优于对比方法,在天文数据集上的表现尤为出色,预测误差分别降低了6.02%、8.01%、6.72%和5.31%。实验结果证明GLB-STGCN适用范围更广,预测效果更好,尤其适合自然周期明显的时间序列预测问题。  相似文献   

4.
现实中的时序数据,往往取自于复杂系统,表现出长记忆效应与短时不规则波动同时并存。传统的时序数据的分析和预测方法一般对不同层次的影响不加以区分,而是为其建立一个统一的模型,这使得在对复杂系统建模时需要用大量的参数予以表征,影响预测效率与精度。为此采用新的方法,将序列数据本身进行多平滑因子分解,对分解后的序列进行多尺度的采样并分别建模、预测,最后将结果整合。该方法应用于股票的实验表明,即使对起伏波动很大的时间序列,也能够得到较好的预测结果。  相似文献   

5.
基于神经网络的时间序列预测方法进展   总被引:10,自引:0,他引:10  
首先对神经网络应用于时间序列预测的方法进行了详细的介绍。在此基础上与传统的预测方法进行了比较,接着概括分析了几种不同的神经和于预测的结果。指出由于神经网络独特的信息处理能力,使得它为一类高度非线性动态关系的时间序列预测提供了一条有效途径。最后,对神经网络在时间序列预测领域的进一下邮  相似文献   

6.
基于小波分解和聚类模糊系统的时间序列预测   总被引:1,自引:0,他引:1  
黄景春  肖建 《计算机应用》2006,26(10):2395-2397
结合小波分析的多分辨特性和模糊规则的可解释性,提出了一种非平稳时间序列预测方法。首先将时间序列信号分解为各尺度上的细节信号和平滑信号,使用软、硬阈值折衷法消除噪声,并对各层重构信号单独使用聚类模糊系统进行预测,最后将各预测结果累加得到对整个时间序列的预测。仿真试验表明此方法是有效的。  相似文献   

7.
基于小波神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
本文提出了一种用小波神经网络进行混沌时间序列预测的方法,并介绍了小波神经网络的基本构造和学习算法。在此基础上,通过由Logistic方程产生的混沌时间序列对该网络进行模拟实验,证明了该神经网络具有较好的预测效果。  相似文献   

8.
基于VMD和GRNN的混沌时间序列预测   总被引:1,自引:0,他引:1  
随着非线性混沌动力学的发展,混沌时间序列的预测已经成为一个非常重要的研究方向。针对混沌时间序列的非线性和非平稳性的特点,提出一种变模态分解(VMD)和广义神经网络(GRNN)相结合的混沌时间序列预测方法,首先将混沌时间序列分解为多个固有模态函数(IMF)和余量(RF),然后对每个分量建立GRNN预测模型,最后将各分量的预测结果之和作为混沌时间序列的预测结果。采用Mackey-Glass混沌时间序列作为仿真实例,实验结果表明VMD-GRNN模型的预测精度相对于BP、ARMA和EMD-GRNN均有提高,证明了上述方法的有效性。  相似文献   

9.
基于神经网络模型的时间序列预测算法及其应用   总被引:11,自引:0,他引:11  
提出了一种神经网络模型的时间序列直接多步预测算法。网络的学习采用具有遗忘因子的BP算法与时差方法相结合的混合算法,解决了经典BP算法在直接多步预测中不能渐进计算的问题,同时网络具备一定的结构学习能力。采用该算法对现场采集的高炉铁水含硅量时间序列数据进行预报实验,表明本文提出的直接多步预测方法是可行的。  相似文献   

10.
支持向量机理论是20世纪90年代由Vapnik提出的一种基于统计学习理论的新的机器学习方法,其具有全局最优解和较好的泛化能力,可将其用于求解时间序列预测间题.但是对于非平稳时间序列的顶测,利用支持向量机算法单独建立一个模型的预测结果不如平稳时间序列那样明显,可以采用经验模式分解法作为时序预测的预处理工具.先将非平稳时间序列进行经验模式分解,再对各个分量分别建模,最后将各分量预测结果进行组合.同时通过仿真实验验证了该方法是有效的.  相似文献   

11.
李晓  卢先领 《计算机工程》2022,48(2):291-296+305
电力负荷预测对电力系统的部署、规划和运行影响重大,但目前各输入特征对电网负荷情况影响的程度不稳定,且递归神经网络捕获负荷数据的长期记忆能力差,导致预测精度下降。提出一种基于双重注意力机制和GRU网络的预测新模型,利用特征注意力机制自主分析历史信息与输入特征间的关联关系,提取重要特征,并通过时序注意力机制自主选取GRU网络中关键时间点的历史信息,提升较长时间段预测效果的稳定性。在3个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,对比SVR、KPCA-ELM、DBN、GRU、Attention-GRU、CNN-LSTM、Attention-CNN-GRU模型预测精度分别提高了2.47、1.14、1.93、1.37、1.04、0.74、0.41个百分点。  相似文献   

12.
时间序列预测是典型的时间序列分析任务,对于辅助决策、资源配置、提前采取止损措施等方面有重要意义,在包括电力、气象、交通、商业等领域有广泛应用.近年来,时间序列预测算法一直是机器学习的热门研究领域,其中多变量时间序列预测是一个具有挑战性的任务.本文研究多变量时间序列预测的局部变量预测精度问题,即多变量预测需要在提升整体预...  相似文献   

13.
当研究的系统扰动因素过大或系统行为在某个时川点发生突变,出现严重扰动系统的异常数据时,提出不应直接按原始数据建模预测,而应根椐实际情况适当地对数据预处理.提出了基于数据修正的改进型灰色神经网络组合和集成预测,并根据南昌火车站旅客发送量时间序列建立了多个模型,从模型预测效果对比中说明数据修正、改进型灰色模型和改进型灰色神经网络、灰色神经网络组合和集成确实能提高预测精度.另外,修正数据要把握一个度,不能修正全部数据,只能修正较异常的数据,要在数据的趋势性和预测的灵敏性间取得平衡。  相似文献   

14.
针对农产品期货价格波动的非线性及国内外期货产品的联动性特征,考虑到传统神经网络预测模型未能针对多源输入变量间的因果关系进行定量表征,构建融合传递熵的图神经网络预测模型。通过计算传递熵表示节点间的邻接矩阵,作为先验信息识别变量间的因果关系;设置多尺寸滤波器的时间卷积模块提取节点特征,用于识别序列时间依赖性;设置图卷积模块实现对节点信息及其邻域信息的传播与特征筛选,最后连接参数,输出最终的预测结果。在大豆期货数据上的实证研究表明,相较于现有的通用预测模型,该模型能够实现最佳的预测效果。  相似文献   

15.
提出了一种动态递归神经网络模型进行混沌时间序列预测,以最佳延迟时间为间隔的最小嵌入维数作为递归神经网络的输入维数,并按预测相点步进动态递归的生成训练数据,利用混沌特性处理样本及优化网络结构,用递归神经网络映射混沌相空间相点演化的非线性关系,提高了预测精度和稳定性。将该模型应用于Lorenz系统数据仿真以及沪市股票综合指数预测,其结果与已有网络模型预测的结果相比较,精度有很大提高。因此,证明了该预测模型在实际混沌时间序列预测领域的有效性和实用性。  相似文献   

16.
时间序列分析是根据客观事物的连续性和规律性推测未来发展趋势的预测方法,分析时设法过滤除去不规则变动,突出反映趋势性和周期性变动。为了提高预测精度,构建了EMD-BP神经网络预测模型,利用Hilbert-Huang变换中的经验模态分解将时间序列分解为有限个本征模函数,重构后进行BP神经网络预测。通过对中国石化的股票资料进行实验仿真,表明该模型降低了被预测数据的非平稳性,其精度比直接用神经网络预测有较明显的提高。  相似文献   

17.
传统预测模型在处理多元时间序列时, 常常难以捕捉其非线性动力系统的复杂变化规律导致预测精度较低. 针对此问题, 本文将PCC-BiLSTM-GRU-Attention组合模型的预测方法进行了探讨和验证. 该方法首先使用Pearson相关系数(PCC)进行相关性检验并删除无关特征, 实现了对多元数据的降维选优. 其次使用双向长短期记忆神经网络(BiLSTM)双向提取时序特征. 最后使用GRU神经网络融合注意力机制(Attention), 进一步学习双向时序特征的变化规律, 精准捕捉关键时刻的信息. 为了验证该方法在多元时间序列中的可行性, 本文以股票价格预测作为实验场景, 并与BP模型、LSTM模型、GRU模型、BiLSTM-GRU模型、BiLSTM-GRU-Attention模型进行对比. 验证结果表明: 本文探讨的PCC-BiLSTM-GRU-Attention组合模型的预测方法相比其他模型具有较高的预测精度, 其平均绝对百分比误差(MAPE)达到了2.484%, 决定系数达到了0.966.  相似文献   

18.
主成分分析与神经网络的结合在多变量序列预测中的应用   总被引:1,自引:0,他引:1  
目前预测方法的研究主要集中在单变量时间序列上,本文建立起一种针对多元变量非线性时间序列建模和预测的方法框架.首先,同时考虑序列状态间的线性相关性和非线性相关性,建立初始延迟窗以包含充分的预测信息;然后,利用主成分分析(PCA)方法寻找不同变量在数据空间中的最大方差方向,扩展PCA应用于提取多个变量的综合信息,重构多元变量输入状态相空间;最后,利用神经网络逼近不同变量之间以及当前状态和将来状态之间的函数映射关系,实现多元变量预测.对Ro¨ssler混沌方程和大连降雨、气温序列的预测仿真说明了本文方法的有效性,为多元变量时间序列分析提供了一条新的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号