共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
提出一种基于小波分解的网络流量时间序列的分析和预测方法。将非平稳的网络流量时间序列通过小波分解成为多个平稳分量,采用自回归滑动平均方法分别对各平稳分量进行建模,将所有分量的模型进行组合,得到原始非平稳网络流量时间序列的预测模型。在仿真实验中,利用网络流量文库的时间序列数据建立了预测模型,并对其进行独立测试检验。仿真结果表明,本预测方法提高了网络流量时间序列的预测准确率,是一种有效、稳健的网络流量预测方法。 相似文献
3.
为了扩大时空图卷积网络的预测范围,将它应用在关联关系未知场景下的多变量时间序列预测问题,提出一种附加图学习层的时空图卷积网络预测方法(GLB-STGCN)。图学习层借助余弦相似度从时间序列中学习图邻接矩阵,通过图卷积网络捕捉多变量之间的相互影响,最后通过多核时间卷积网络捕捉时间序列的周期性特征,实现对多变量的精准预测。为验证GLB-STGCN的有效性,使用天文、电力、交通和经济四个领域的公共数据集和一个工业场景生产数据集进行预测实验,结果表明GLB-STGCN优于对比方法,在天文数据集上的表现尤为出色,预测误差分别降低了6.02%、8.01%、6.72%和5.31%。实验结果证明GLB-STGCN适用范围更广,预测效果更好,尤其适合自然周期明显的时间序列预测问题。 相似文献
4.
5.
基于神经网络的时间序列预测方法进展 总被引:10,自引:0,他引:10
首先对神经网络应用于时间序列预测的方法进行了详细的介绍。在此基础上与传统的预测方法进行了比较,接着概括分析了几种不同的神经和于预测的结果。指出由于神经网络独特的信息处理能力,使得它为一类高度非线性动态关系的时间序列预测提供了一条有效途径。最后,对神经网络在时间序列预测领域的进一下邮 相似文献
6.
基于小波分解和聚类模糊系统的时间序列预测 总被引:1,自引:0,他引:1
结合小波分析的多分辨特性和模糊规则的可解释性,提出了一种非平稳时间序列预测方法。首先将时间序列信号分解为各尺度上的细节信号和平滑信号,使用软、硬阈值折衷法消除噪声,并对各层重构信号单独使用聚类模糊系统进行预测,最后将各预测结果累加得到对整个时间序列的预测。仿真试验表明此方法是有效的。 相似文献
7.
基于小波神经网络的混沌时间序列预测 总被引:1,自引:0,他引:1
本文提出了一种用小波神经网络进行混沌时间序列预测的方法,并介绍了小波神经网络的基本构造和学习算法。在此基础上,通过由Logistic方程产生的混沌时间序列对该网络进行模拟实验,证明了该神经网络具有较好的预测效果。 相似文献
8.
基于VMD和GRNN的混沌时间序列预测 总被引:1,自引:0,他引:1
随着非线性混沌动力学的发展,混沌时间序列的预测已经成为一个非常重要的研究方向。针对混沌时间序列的非线性和非平稳性的特点,提出一种变模态分解(VMD)和广义神经网络(GRNN)相结合的混沌时间序列预测方法,首先将混沌时间序列分解为多个固有模态函数(IMF)和余量(RF),然后对每个分量建立GRNN预测模型,最后将各分量的预测结果之和作为混沌时间序列的预测结果。采用Mackey-Glass混沌时间序列作为仿真实例,实验结果表明VMD-GRNN模型的预测精度相对于BP、ARMA和EMD-GRNN均有提高,证明了上述方法的有效性。 相似文献
9.
10.
支持向量机理论是20世纪90年代由Vapnik提出的一种基于统计学习理论的新的机器学习方法,其具有全局最优解和较好的泛化能力,可将其用于求解时间序列预测间题.但是对于非平稳时间序列的顶测,利用支持向量机算法单独建立一个模型的预测结果不如平稳时间序列那样明显,可以采用经验模式分解法作为时序预测的预处理工具.先将非平稳时间序列进行经验模式分解,再对各个分量分别建模,最后将各分量预测结果进行组合.同时通过仿真实验验证了该方法是有效的. 相似文献
11.
电力负荷预测对电力系统的部署、规划和运行影响重大,但目前各输入特征对电网负荷情况影响的程度不稳定,且递归神经网络捕获负荷数据的长期记忆能力差,导致预测精度下降。提出一种基于双重注意力机制和GRU网络的预测新模型,利用特征注意力机制自主分析历史信息与输入特征间的关联关系,提取重要特征,并通过时序注意力机制自主选取GRU网络中关键时间点的历史信息,提升较长时间段预测效果的稳定性。在3个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,对比SVR、KPCA-ELM、DBN、GRU、Attention-GRU、CNN-LSTM、Attention-CNN-GRU模型预测精度分别提高了2.47、1.14、1.93、1.37、1.04、0.74、0.41个百分点。 相似文献
12.
13.
当研究的系统扰动因素过大或系统行为在某个时川点发生突变,出现严重扰动系统的异常数据时,提出不应直接按原始数据建模预测,而应根椐实际情况适当地对数据预处理.提出了基于数据修正的改进型灰色神经网络组合和集成预测,并根据南昌火车站旅客发送量时间序列建立了多个模型,从模型预测效果对比中说明数据修正、改进型灰色模型和改进型灰色神经网络、灰色神经网络组合和集成确实能提高预测精度.另外,修正数据要把握一个度,不能修正全部数据,只能修正较异常的数据,要在数据的趋势性和预测的灵敏性间取得平衡。 相似文献
14.
针对农产品期货价格波动的非线性及国内外期货产品的联动性特征,考虑到传统神经网络预测模型未能针对多源输入变量间的因果关系进行定量表征,构建融合传递熵的图神经网络预测模型。通过计算传递熵表示节点间的邻接矩阵,作为先验信息识别变量间的因果关系;设置多尺寸滤波器的时间卷积模块提取节点特征,用于识别序列时间依赖性;设置图卷积模块实现对节点信息及其邻域信息的传播与特征筛选,最后连接参数,输出最终的预测结果。在大豆期货数据上的实证研究表明,相较于现有的通用预测模型,该模型能够实现最佳的预测效果。 相似文献
15.
16.
17.
传统预测模型在处理多元时间序列时, 常常难以捕捉其非线性动力系统的复杂变化规律导致预测精度较低. 针对此问题, 本文将PCC-BiLSTM-GRU-Attention组合模型的预测方法进行了探讨和验证. 该方法首先使用Pearson相关系数(PCC)进行相关性检验并删除无关特征, 实现了对多元数据的降维选优. 其次使用双向长短期记忆神经网络(BiLSTM)双向提取时序特征. 最后使用GRU神经网络融合注意力机制(Attention), 进一步学习双向时序特征的变化规律, 精准捕捉关键时刻的信息. 为了验证该方法在多元时间序列中的可行性, 本文以股票价格预测作为实验场景, 并与BP模型、LSTM模型、GRU模型、BiLSTM-GRU模型、BiLSTM-GRU-Attention模型进行对比. 验证结果表明: 本文探讨的PCC-BiLSTM-GRU-Attention组合模型的预测方法相比其他模型具有较高的预测精度, 其平均绝对百分比误差(MAPE)达到了2.484%, 决定系数达到了0.966. 相似文献
18.
主成分分析与神经网络的结合在多变量序列预测中的应用 总被引:1,自引:0,他引:1
目前预测方法的研究主要集中在单变量时间序列上,本文建立起一种针对多元变量非线性时间序列建模和预测的方法框架.首先,同时考虑序列状态间的线性相关性和非线性相关性,建立初始延迟窗以包含充分的预测信息;然后,利用主成分分析(PCA)方法寻找不同变量在数据空间中的最大方差方向,扩展PCA应用于提取多个变量的综合信息,重构多元变量输入状态相空间;最后,利用神经网络逼近不同变量之间以及当前状态和将来状态之间的函数映射关系,实现多元变量预测.对Ro¨ssler混沌方程和大连降雨、气温序列的预测仿真说明了本文方法的有效性,为多元变量时间序列分析提供了一条新的途径. 相似文献