共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of CO2 with K-promoted Mo2C/Mo(100) has been studied with high-resolution electron energy loss spectroscopy, work function measurements and temperature-programmed
desorption. Pre-adsorbed potassium dramatically affects the adsorption behavior of CO2 on the Mo2C/Mo(100) surface. It increases the rate of adsorption, the binding energy of CO2 and it induces the dissociation of CO2 through the formation of negatively charged CO2. Potassium adatoms also promote the dissociation of adsorbed CO over Mo2C.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
2.
Jamil Ahmad Wajahat Ur Rehman Shaik Khadheer Basha Basheer Ahamed Kuppanna Chidambaram 《Polymer-Plastics Technology and Engineering》2019,58(4):366-383
Polyamide-b-ethylene (Pebax) is a promising material for membrane-based gas separation application with excellent CO2 capturing potential. Pebax is a rubbery elastomer which offers good mechanical support with its hard crystalline phase and excellent gas transport through its amorphous polyether phase. This review article includes recent advances in Pebax based membrane synthesis, solvent selection for membrane synthesis, compatible fillers with Pebax matrix and the improved gas separation performance of the prepared membranes. The literature review shows that Pebax based membranes are a good candidate for separation of CO2 from flue gases and can be used for commercial applications. 相似文献
3.
Hao LIU Hong Yao Xing Yuan Xiaojie Xu Yibo Fan Takashi Ando 《Chemical Engineering Communications》2013,200(8):991-1011
Based on experiments on desulfurization, CaSO4 decomposition, and a system approach using theoretical analysis, efficient in-furnace desulfurization in O2/CO2 combustion was investigated. The influence of combustion conditions and sorbent properties on system desulfurization efficiency was clarified. The global desulfurization efficiency was found to increase with O2 purity. The global desulfurization efficiency in a dry recycle was higher than that in a wet recycle. The global efficiency of in-furnace desulfurization decreased with initial O2 concentration. As the temperature increased, the global desulfurization efficiency increased first and then decreased due to the decomposition of CaSO4. In the temperature range investigated, the global desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion in air. The global desulfurization efficiency decreased with sorbent size. When the particle radius decreased to one quarter, the global desulfurization efficiency doubled, becoming as high as 80%. The global desulfurization efficiency was very different among the three sorbents investigated, whether in O2/CO2 combustion or in conventional air combustion. The global desulfurization efficiency increased in the order of Ca(OH)2, scallop, and limestone in O2/CO2 combustion, but in the order of scallop, Ca(OH)2, and limestone in conventional air combustion. Nevertheless, all three sorbents demonstrated much higher desulfurization efficiency in O2/CO2 combustion than in conventional air combustion. 相似文献
4.
Complexes (H(2)O/CO(2), e-(H(2)O/CO(2)) and h(+)-(H(2)O/CO(2))) in the reaction system of CO(2) photoreduction with H(2)O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H(2)O/CO(2) captured photo-induced electron and hole produced e-(H(2)O/CO(2)) and h(+)-(H(2)O/CO(2)), respectively. The results revealed that CO(2) and H(2)O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO(2) and H(2)O, which might be attributed to the synergistic effect and which could not be captured experimentally. 相似文献
5.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2
− and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving
bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy
groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium
may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced
a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial
sites appeared to exhibit unusual adsorption properties. 相似文献
6.
Katsutoshi Nagaoka Kulathuiyer Seshan Kazuhiro Takanabe Ken-ichi Aika 《Catalysis Letters》2005,99(1-2):97-100
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability. 相似文献
7.
N. M. Gupta V. S. Kamble R. M. Iyer K. Ravindranathan Thampi M. Gratzel 《Catalysis Letters》1993,21(3-4):245-255
FTIR spectra of a Ru-RuOx/TiO2 catalyst obtained on co-adsorption of CO, CO2 and H2 in the temperature range of 300–500 K were found to be the sum total of corresponding spectra observed during methanation of individual oxides. The two oxides compete for metal sites and at each temperature they reacted simultaneously to form distinct transient Ru(CO)n type species even though the nature, the stability and the reactivity of these species were different in the two cases. The monocarbonyl species formed during adsorption/reaction of CO alone or of CO + H2 were bonded more strongly than those formed during CO2 + H2 reaction. 相似文献
8.
Pressure swing adsorption experiments were carried out for the separation of equimolar mixtures of carbon dioxide and methane containing small amounts of hydrogen sulfide, utilizing 4A, 5A, and 13X molecular sieves. High-purity methane of zero or nearly zero hydrogen sulfide concentration was produced in the adsorption stage with 13X and 5A sieves, at high product recovery rates; high-purity carbon dioxide was obtained with the same sieves in the desorption stage. Zeolite 4A was found capable of raising considerably the hydrogen sulfide concentration in the accumulated desorption product (vs. the adsorption feed) at high recovery rates too. Adsorption selectivity values derived from the experimental results for all three gas pairs were in line with some theoretical predictions and experimental data of the literature. 相似文献
9.
10.
Sebastián E. Collins Dante L. Chiavassa Adrian L. Bonivardi Miguel A. Baltanás 《Catalysis Letters》2005,103(1-2):83-88
The hydrogenation of CO2 was investigated on Ga2O3-promoted Pd/SiO2 catalyts and mechanical mixtures of Ga2O3/SiO2 and Pd/SiO2 catalysts (H2/CO2 = 3; P = 3.0 MPa; T = 523 K). By means of the latter it was possible to demonstrate that atomic hydrogen, Hs, can be generated by Pd0 far from Ga2O3, and move (spill-over) there to reach the other reactive species (formates) and complete the reaction cycle. The reaction results indicate that (as also evidenced by in situ FTIR) the Ga2O3-Pd/SiO2 catalyst works as a true bi-functional system. The metal-promoter intimacy is not decisive in terms of the catalytic chemistry of the system, but the closeness between the Pd crystallites and the Ga2O3 surface patches boost the activity, owing to a minimized effort in the Hs supply to the latter. 相似文献
11.
Yong XiangZhe Wang Chao XuChengchuan Zhou Zheng LiWeidou Ni 《The Journal of Supercritical Fluids》2011,58(2):286-294
The corrosion behavior of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 was investigated using weight-loss measurements. As a comparison, the instantaneous corrosion rate in the early stages for iron in the same corrosion environment was measured by resistance relaxation method. Surface analyzes using SEM/EDS, XRD and XPS were applied to study the morphology and chemical composition of the corroded sample surface. Weight-loss method results showed that the corrosion rate of X70 steel samples increased with SO2 concentration, while the corrosion rate increased before decreasing with SO2 concentration for iron sample. Comparing resistance relaxation method results with weight-loss method results, it is found that the instantaneous corrosion rate of iron is much higher than the uniform corrosion rate of the iron tablet specimens which are covered with thick corrosion product films after a long period of corrosion. The corrosion product films were mainly composed of FeSO4 and FeSO3 hydrates. The possible reaction mechanism under such environment was also analyzed, and the electrochemical reaction between the dissolved SO2 in the condensed water film with iron is the critical reaction step. 相似文献
12.
Mesocellular silica foam (MSU-F) supports were functionalized via wet impregnation with various amine and alcohol compounds for use as high-capacity adsorbents for CO2 separation. The effect of the amino, hydroxyl, and ether functional groups in the impregnating mixture on the CO2 adsorption capacity was investigated. Chemical adsorption was controlled by the composition of the compounds, and the blending effect on the adsorption performance was dependent on the temperature. MSU-F (30 wt.%) impregnated with a mixture of tetraethylenepentamine (40 wt.%) and aminoethylethanolamine (30 wt.%) showed a high adsorption capacity of 5.4 mmol/g at 333 K for 15 kPa CO2. 相似文献
13.
Poly(ethylene terephthalate) (PET) nanofibers were prepared by irradiating a PET fiber with radiation from a carbon dioxide (CO2) laser while drawing it at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The flow velocity from the orifice was estimated by computer simulation; the fastest flow velocity was calculated to be 401 m s−1 at a chamber pressure of 6 kPa. A nanofiber obtained using a laser power of 8 W and a chamber pressure of 6 kPa had an average diameter of 193 nm and a draw ratio of about 900,000. This technique is a novel method for producing nanofibers. 相似文献
14.
Mohammad Reza HaghnegahdarAmir Rahimi Mohammad Sadegh Hatamipour 《Chemical Engineering Research and Design》2011,89(6):616-620
In the present study, the carbonation reaction of hydrated lime in semi-dry condition is investigated experimentally in a laboratory-scale spouted bed reactor. Results show that for operating conditions where the concentration of CO2 is low, the capture efficiency is raised by increasing the inlet CO2 concentration. Additionally, because of the inconsistency between the experimental reaction rate and the calculated values based on the previous proposed equations, a new rate equation is introduced that considers the dependency of CO2 concentration too. To validate the proposed equation, its predictions were compared with another set of experimental data. 相似文献
15.
Zahra Hamrahi 《分离科学与技术》2017,52(3):544-556
In this study, permeation of carbon dioxide (CO2) and methane (CH4) through the polycarbonate/polyethylene glycol (PC/PEG) blend membrane was investigated. The effect of PEG content (0–5 wt%) on the permeability and selectivity was studied. Permeability measurements were carried out at pressures of 1–7 bar and at room temperature. The membranes were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and density measurement. The results revealed that the PC/PEG blends are miscible/partially miscible without considerable micro-phase separation. The effect of PEG content and gas pressure on the diffusion and solubility of coefficients were also investigated and analyzed. It was concluded that the most influential parameter for the permeation is the diffusion coefficient of the gases. The permeability and selectivity decrease as the operating pressure and PEG content are increased. Furthermore, the results showed that the addition of 5 wt% of PEG into PC increases the CO2/CH4 selectivity from 26.6 ± 0.99 to 40.9 ± 2.14 (more than 53%) at 1 bar. 相似文献
16.
Raquel V. Barrulas Clara Lpez-Iglesias Marcileia Zanatta Teresa Casimiro Gonzalo Mrmol Manuela Ribeiro Carrott Carlos A. García-Gonzlez Marta C. Corvo 《International journal of molecular sciences》2022,23(1)
CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel’s properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6–97.0%) and surface areas (270–744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g−1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30% AEROPIL. 相似文献
17.
Monomer mixture of styrene (St) and N-cyclohexylmaleimide (ChMI) and initiator benzoyl peroxide (BPO) were first impregnated into isotactic polypropylene (iPP) films simultaneously using supercritical carbon dioxide (SC CO2) as a solvent and swelling agent at 35.0 °C. The composites were obtained after the monomers were grafted onto the iPP matrix at 70 °C. The effects of various conditions, such as pressure, monomer concentration, and the molar ratio of the two monomers in the soaking process, on the composition of the composites were determined. The molar ratios of St to ChMI in the composites were estimated by Fourier transform infrared spectroscopy. The thermal properties, the morphology, and the mechanical properties of the composites were characterized by different techniques. The results demonstrated that the phase size of the grafted St-ChMI was very small and the phase boundary was very ambiguous. The composites had better thermal stability than the original iPP film. The Young's modulus and tensile strength of the film increased continuously with increasing grafting percentage. The two grafted monomers in the composites had good synergetic effect. 相似文献
18.
Priscilla Amaral Daniela Garcia Miguel Cardoso Marisa Mendes Maria Alice Coelho Fernando Pessoa 《International journal of molecular sciences》2009,10(12):5217-5223
The use of enzymes in supercritical CO2 (SCCO2) has received extensive attention in recent years. Biocatalysts have the advantage of substrate specificity and SCCO2 offers several advantages over liquid solvents. This work deals with the utilization of SCCO2 as a medium for the enzymatic removal of phenol from aqueous solutions using tyrosinase. Since the presence of oxygen is crucial for the enzyme-catalyzed oxidation, the substantial solvating power of SCCO2 makes it a promising medium for such reactions. The conversion of phenol was higher at 10 MPa. Under near critical conditions (7 MPa, 35 °C), the addition of air at 5 × 105 Pa of pressure improved phenol removal. 相似文献
19.
CO adsorbed infrared spectroscopy study was conducted in this work in order to better understand the significantly improved
anti-coke performance of Ni/Al2O3 catalyst obtained via argon glow discharge plasma treatment. The present study revealed a significant decrease of linear
to bridge (L/B) adsorbed CO for glow discharge plasma treated Ni/Al2O3, compared to that for untreated Ni/Al2O3, indicating an enhancement of close packed plane concentration. This structure change leads to lower methane turnover frequency
(TOF) and better balance of carbon formation-gasification, resulting in better anti-coke property of Ni/Al2O3 for CO2 reforming of methane. 相似文献
20.
Effect of confinement and surface functionalization in carbon nanotubes (CNTs) on the competitive adsorption of a binary CO2/CH4 mixture has been investigated by grand canonical Monte Carlo simulations. Adsorption using CNTs with different functionalization arrangements, different diameters, different functionalization degrees, and different functional groups, such as –COOH, –CO, –OH, –CH3, is investigated. Effects of (a) the pore textural properties, such as pore size and accessible surface area, and (b) the gas–adsorbent interaction, especially the electrostatic interaction, are discussed. From these results, we discuss the impact that variables such as confinement and surface functionalization have on the performance for CO2 separation. 相似文献