首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纯PcBN是新型金属切削刀具材料。通过煮沸称重法得到了高温高压烧结的纯PcBN陶瓷的显孔隙率,使用imageJ2x软件计算纯PcBN陶瓷的分型维数。结果表明,在1700℃、5.8 GPa下,使用15~25μm粒度的cBN粉末烧结得到的纯PcBN孔隙最少;温度降低、压力降低以及降低原料粒度均会导致纯PcBN孔隙增加。在未发生cBN相变的情况下,材料孔隙率的直接因素为原料粒度、塑性变形量和微粉破裂量。  相似文献   

2.
<正>立方氮化硼刀具(cBN刀具或PcBN刀具)的硬度一般为HV3000~5000,精HV硬度换算HRC相当于HRC95~100,对于HRC50以上高硬度淬火工件高速加工降低成本来讲最为经济划算。目前,立方氮化硼刀具用于黑色金属加工领域,是耐磨性最高的刀具材料,经过论证,立方氮化硼刀片(cBN刀具)的寿命一般是硬质合金刀片和陶瓷刀片的几倍到几十倍,而且随着研究的进步,立方氮化硼刀具(cBN刀具)适应各种高硬度  相似文献   

3.
实验采用粒度为W10的cBN微粉在国产六面顶压机上进行高压烧结,通过对样品磨耗比、显微硬度的测试与分析,获得了合成整体PcBN材料较优的烧结工艺参数:烧结压力为5.4GPa,烧结温度为1500℃,烧结时间为240s,其显微硬度为HV3897、磨耗比为8750;结合SEM、TEM、EDS、XRD对整体PcBN烧结样品的微观形貌、元素分布及物相组成进行分析。结果表明,整体PcBN材料高压烧结聚结机理为cBN颗粒的高压破碎及塑性变形,是cBN-cBN直接结合和cBN颗粒表面与粘结相的冶金反应形成的cBN-M-cBN中介结合,同时得出粘结剂反应生成了固结性能良好的AlN和硬度与韧性较高的AlB_2,提高了粘结相的硬度和韧性。  相似文献   

4.
将立方氮化硼微粉和Ti、AlN微粉按一定的质量比进行混料,在高温和超高压条件下合成聚晶立方氮化硼(PCBN)复合片,利用X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行分析,研究了烧结温度对PCBN的力学性能、显微结构以及切削性能的影响。研究表明:在超高压5.5 GPa,高温1400~1550℃之间,PCBN复合片中的物相由BN、AlN、TiN、TiB2和W组成;PCBN中的cBN颗粒通过反应生成的物相彼此连接;PCBN的力学性能和切削性能随烧结温度的升高增强。  相似文献   

5.
将cBN、Al、Ti微粉添加不同稀土氧化物进行混料,采用高温(1400℃)、高压(5.5GPa)原位合成聚晶立方氮化硼(PcBN)复合材料。通过X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)研究了添加Y2O3、Gd2O3、Nd2O3对PcBN复合材料物相和显微结构的影响,测试并分析了不同稀土氧化物对该体系中各试样相对密度和力学性能的影响。结果表明:添加稀土氧化物可以提高样品的致密度和显微硬度,其中添加Gd2O3比添加Y2O3和Nd2O3更有利于促进TiB2棒晶的形成,获得综合力学性能最佳的PcBN,其显微硬度为33.21GPa、抗弯强度为885.42MPa。  相似文献   

6.
《超硬材料工程》2010,(2):62-62
聚晶金刚石(PCD)材料、聚晶立方氮化硼(PcBN)材料,是金刚石或cBN微粉在高温高压下合成在硬质合金基体上的,它克服了金刚石、cBN单晶各向异性的特点,具有高硬度及高耐磨性,是理想的刀具材料,被广泛应用于汽车、航空、航天、建材等领域的加工。合成的PCD、PcBN片外圆形状不规则,表面不平整。  相似文献   

7.
文章了讨论近年来大颗粒立方氮化硼(cBN)单晶的合成技术,指出了高温高压法制备大颗粒立方氮化硼(cBN)研究现状及存在的问题,并在此基础上指出了大颗粒cBN单晶制备技术的发展方向。  相似文献   

8.
PcBN高压烧结过程及机理研究   总被引:2,自引:0,他引:2  
聚晶立方氮化硼(PcBN)刀具材料不仅热稳定性好、化学惰性强, 而且硬度高,是目前加工黑色金属材料以及实现加工领域的高效、高速和高精度的最佳工具材料.文章旨在对高温高压下不同粘结剂在PcBN的烧结过程中的行为规律作一个总结,以期进一步指导我们寻找更优的粘结剂组分和配比,了解PcBN的高压烧结机理,制备出高性能的PcBN刀具材料.  相似文献   

9.
国外动态     
生产立方氮化硼的新方法法国研究人员开发了一种生产立方氮化硼的新方法,并申请了美国专利US4810479。典型立方氮化硼的生产需要2000℃高温和10GPa高压。在原料中加入一种新的就地制成的熔剂型金属氟氮化物能使温度和压力分别降至1200~1300℃和7GPa。产率(约40%)和晶粒度(1~160/μm)取决于原料和反应条件。  相似文献   

10.
通过高温高压合成了无硬质合金衬底的立方氮化硼聚晶(PcBN)。该cBN聚晶厚度1~5mm,具有导电性、可以被电火花切割。与传统立方氮化硼复合片(带有硬质合金衬底)进行对比,该立方氮化硼聚晶无中间钴的过渡层、具有比传统复合片长10%~20%的切削寿命。  相似文献   

11.
以cBN、TiN、Al、Al2O3为实验原料,在六面顶压机上合成了PcBN(聚晶立方氮化硼)复合片刀具材料。研究了混料时间、混料方式对PcBN复合片性能的影响,以期能有效解决PcBN超硬刀具材料性能稳定性差和均匀性差等问题,从而保证产品质量的一致性和可靠性。通过对PcBN复合片力学性能以及切削性能的分析可知,当混料时间为2 h且选择不锈钢罐为球磨罐时,得到的PcBN复合片的性能最佳。  相似文献   

12.
聚晶立方氮化硼(PcBN)因具有硬度高、耐磨性好、化学惰性强等优点,其所制刀具广泛应用于铸铁、粉末冶金、高温合金、淬硬钢等材料的加工领域。文章回顾了国内50年来cBN及其制品的发展历程,取得的PcBN复合片片径从10发展到50mm等一系列成绩;也指出目前国内PcBN刀具材料存在稳定性差、强度低、加工淬火钢寿命短、片径小的这些主要问题;并对国内PcBN刀具材料的发展进行了展望,提出未来几年国内PcBN刀具材料将重点提高复合片的强度、精细研究工艺、开发加工淬火钢用PcBN复合片、片径扩大到58~74mm、发展涂层技术最终进入高端市场的发展方向。  相似文献   

13.
PcBN切削刀具用于高速高温下加工铁基合金,为了准确地预测这种刀具材料的寿命,尤其了解在切削温度和切削压力下发生的变形和有关机理很有必要.本研究以维氏压痕作为一种手段来评估cBN含量、结合剂相和cBN晶粒尺寸对几种PcBN材料机械性能的影响.研究表明,随着试验温度的升高,刀具材料的变形机理发生变化,经证实,压痕法有益于识别这种变化.  相似文献   

14.
对于影响聚晶金刚石(PCD)和聚晶立方氮化硼(PcBN)性能的研究,多数集中在金刚石和cBN晶粒特征(形貌、尺寸、分布等)和烧结后各界面结合状态等方面,而对于粘结相对其的影响论述较少。文章详细分析讨论了粘结相特性(包括种类、含量、开始粉末粒度、最终晶粒尺寸及分布均匀性等)对PCD和PcBN性能的影响。也讨论分析了高压高温工艺(HPHT)对粘结相在烧结过程中演变的影响。  相似文献   

15.
针对传统PcBN刀具材料由于结合剂的原因,存在整体热稳定性、抗磨损性偏低等问题,文章采用非化学计量比TiN_(0.3)、TiN_(0.3)+AlN及cBN表面镀钛等方法,研究了这些方法对结合剂与cBN界面结合的影响,讨论了界面形成的物相对PcBN性能的影响;文中采用SEM对样品的抛光表面和断口进行观察,利用EDS分析界面处的元素分布,利用XRD分析了样品的相组成;采用阿基米德排水法测量样品的密度,维氏硬度计测量样品的维氏硬度。利用高精密数控车床对PcBN刀具的切削性能进行了测试。结果证明:TiN_(0.3)与cBN复合后的界面通过中间相TiB_2相结合,AlN的加入促进了TiB_2的生成,并改善了TiN_(0.3)与cBN热膨胀系数的失配。cBN表面镀Ti后实现了界面成分的过渡,加入AlN后界面出现了Al元素的聚集。采用TiN_(0.3)作为结合剂主相,在结合相中添加其它强共价键类金属碳化物或氮化物,通过对原料成分与合成条件的控制,烧结后获得了无低熔点或低硬度相致密的PcBN烧结体。PcBN烧结体具有高硬度,高强度,优异的耐高温性和耐磨损性。通过以TiN_(0.3)作为结合剂主相与cBN的结合,成功制备了系列PcBN刀具材料,均被用来对淬火钢等硬质钢进行高速、高精度和高效切削,使以往主要采用磨削加工的难加工材料实现了切削加工。  相似文献   

16.
利用六面顶液压机,以铝、钴为烧结助剂,在压力5.5 GPa,温度1 470℃,保温时间5 min的条件下制备出碳化硼-立方氮化复合陶瓷。并通过XRD衍射仪、SEM扫描电镜、维式硬度仪对其进行了物相分析、微观形貌表征和硬度测量,并研究了不同含量的立方氮化硼对碳化硼复合陶瓷力学性能的影响。实验结果表明,当碳化硼和立方氮化硼的比例为7∶3时,复合陶瓷具有较好的综合性能,维式硬度为41.6 GPa、密度为2.45 g/cm3、磨耗比为2.5。将立方氮化硼作为增强材料不仅保持了碳化硼的硬度还兼顾了轻质性能。而铝、钴作为烧结助剂不仅降低了烧结温度还抑制了立方氮化硼向六方氮化硼的转变。  相似文献   

17.
以Ar气氛保护管式炉常压合成的Ti3SiC2粉体和商业立方氮化硼微粉为原料,采用六面顶压机,在4.5GPa、1 050℃保温10min的条件下制备出Ti3SiC2结合立方氮化硼超硬复合材料。用扫描电子显微镜观察了复合材料的微观结构,用X射线衍射和电子能谱分析样品的结构和成分。结果表明:立方氮化硼颗粒均匀地分布在基体中,且两者界面结合良好;磨损实验之后,立方氮化硼颗粒仍然与基体结合良好。复合材料基体主要成分为Ti3SiC2以及少量TiC作为第二相。用气氛保护管式炉不能在常压条件下制备这种复合材料,主要原因不是立方氮化硼在常压条件下的高温相变,而是Ti3SiC2在氮化硼存在时的高温分解。  相似文献   

18.
将立方氮化硼微粉和TiN、Al微粉按一定的质量比进行混料,在高温和超高压条件下合成聚晶立方氮化硼(PCBN)复合片,对复合片进行了物相分析、硬度测试以及表面显微结构分析,同时分析了切削淬火钢时cBN含量对PCBN刀具磨损的影响,研究了PCBN刀具切削时的磨损机理。烧结后PCBN复合层中的物相由除了cBN、TiN添加相以外,还出现了新相AlN和TiB_2,说明添加粘接剂与cBN发生反应,并且Al已完全反应,说明复合层中的cBN颗粒通过反应生成新物相,并被粘接剂固结。当cBN含量为80 wt%时,复合片的维氏硬度达到了4512 HV。PCBN后刀面的磨损成一个规则倒三角形,刀具的失效主要是粘结磨损和氧化磨损共同作用的结果。  相似文献   

19.
影响立方氮化硼复合片耐磨性的工艺因素研究   总被引:5,自引:0,他引:5  
通过大量的实验,对立方氮化硼复合片的工艺因素进行了分析.结果表明cBN的粒径和原料的真空净化处理是影响立方氮化硼复合片耐磨性的主要工艺因素.选用Ti-Si-B作为粘接剂,用细颗粒立方氮化硼在5.0~7.0GPa,1673~1873K的条件下[1],合成出磨耗比大于111000立方氮化硼复合片.  相似文献   

20.
B6O是近几年来在国际上引起广泛关注的一种新型超硬材料。它具有低密度、高导热性、耐磨性、高硬度和较好的化学稳定性。在高温高压(3~5GPa,1500~1900K)下通过“一步法”合成了高性能纳米结构B6O超硬复合材料,并分析了合成压力、合成温度、初始材料等条件,对合成样品的物理化学性能、微观结构、相组成的影响。合成样品中B6O微粒在几十到几百纳米之间,属纳米级别。试验在较低的压力下(~3GPa)合成烧结良好的圆柱形样品,用维氏硬度计测量其硬度在32GPa,跟立方氮化硼复合片(PcBN)硬度相当,并且具有较好的断裂韧性。最初的切削实验表明以烧结良好的B6O复合材料制成的工具样品可以高速、干式切削各种陶瓷、金属材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号