共查询到20条相似文献,搜索用时 0 毫秒
1.
受运行环境及传递路径影响,滚动轴承声音信号中包含有强背景噪声和较大的非周期性瞬态冲击成分,导致轴承故障特征提取困难.文中提出一种基于自适应变分模态分解(AVMD)的滚动轴承噪声信号故障诊断方法.该方法首先根据不同的信号自适应地确定模式数和惩罚因子,利用优化参数的VMD对原始信号进行分解,得到多个本征模式分量;然后计算各... 相似文献
2.
3.
为了更好地选取变分模态分解(variational mode decomposition,VMD)的参数并综合考虑轴承故障信号周期冲击性及循环平稳性,构建一种平均包络谱峭度结合平均样本熵优化的变分模态分解及加权合成峭度提取最优本征模态分量(intrinsic mode function,IMF)的轴承故障诊断方法.首先... 相似文献
4.
5.
自适应经验傅里叶分解(AEFD)是最近提出的非平稳信号分解方法,为了解决AEFD的分割边界集设置问题,提出了基于频谱包络检测的改进自适应经验傅里叶分解(EAEFD)方法,该方法以快速傅里叶变换为基础,以包络熵值最小选择最优的分解模态数目,采用极大值包络技术对傅里叶频谱分割,得到一个合理的分割边界,最后采用逆快速傅里叶变换对每个区间信号进行重构。EAEFD能够自适应地将一个复杂信号分解为若干个瞬时频率具有物理意义的单分量信号之和,通过仿真信号和滚动轴承信号分析,将EAEFD方法与经验小波变换(EWT),经验模态分解(EMD),局部特征尺度分解(LCD)和AEFD等方法进行了对比,结果表明EAEFD方法不仅仅能够有效地诊断出故障特征,而且诊断的精度更高。 相似文献
6.
变分模态提取(variational mode extraction,VME)作为一种以极低计算度提取特定信号模态的新方法,其通过设置期望模态中心频率来获得固有模态函数。但是,VME只能针对一个中心频率提取一个分量,无法实现多分量信号的自适应分解。对此,通过依据信号数据长度与带宽自适应设置多分量模态中心频率参数,把信号分解问题转化为多模态优化问题,在此基础上,提出了一种自适应变分模态提取(adaptive variational mode extraction,AVME)方法。此外,为解决单一指标无法衡量最优解调分量全面信息特征的问题,提出将峭度、相关系数和正交性进行融合来凸显及筛选有用分量进行解调和诊断。通过对滚动轴承故障仿真信号和实测信号进行分析,将所提的方法与现有多种信号分解方法对比,结果表明了该方法在计算耗时上和降噪方面的有效性。 相似文献
7.
8.
针对噪声干扰下转子微弱不对中故障特征难以提取的问题,提出一种谱峭度与变分模态分解的转子故障诊断方法。该方法首先利用谱峭度(Spectral Kurtosis)滤除信号背景噪声以强化故障特征相关信号分量,然后通过变分模态分解(Variational Mode Decomposition,VMD)将转子振动信号分解为一系列本征模态分量并对各分量进行频谱分析,提取转子的故障特征。将该方法应用到转子不对中故障实验数据中,结果表明,该方法能有效提取出转子微弱不对中故障特征,并且结果要优于基于谱峭度与经验模态分解(EMD)方法的分析结果。 相似文献
9.
滚动轴承早期故障信号特征微弱且难以提取,为了从轴承振动信号中提取特征参数用于轴承故障诊断和识别,提出基于变分模态分解(Variational Mode Decomposition,VMD)和排列熵(Permutation Entropy,PE)的信号特征提取方法,并采用支持向量机(Support Vector Machine,SVM)进行故障识别。对轴承振动信号进行变分模态分解,得到不同尺度的本征模态函数;计算各本征模态函数的排列熵,组成多尺度的复杂性度量特征向量;将高维特征向量输入基于支持向量基建立的分类器进行故障识别分类。通过滚动轴承实验数据分析了算法中参数选取问题,将该方法应用于滚动轴承实验数据,并与集合经验模态分解和小波包分解进行对比,分析结果表明,基于变分模态分解和排列熵的诊断方法有更高的诊断准确率,能够有效实现滚动轴承的故障诊断。 相似文献
10.
11.
针对变分模态分解中模态个数的设定会对分解结果产生重要影响的问题,提出一种求取最优分解层数的方法,该方法以瞬时频率的幅值特性为依据,通过分析变分模态分解过程中,各分量最大幅值之间的关系来确定最佳分解参数;均方根熵可以反映不同振动信号的能量值,以信号均方根熵为故障特征参量,通过优化支持向量机建立故障分类模型,实现故障模式分类。将基于最大幅值变分模态分解和均方根熵的故障诊断方法应用于滚动轴承实测信号中,实验结果表明基于最大幅值变分模态分解和均方根熵的方法能够有效识别滚动轴承运行状态,识别准确率高达98.75%。 相似文献
12.
针对复合信号源信号数目未知,无法正确预设分解模态数K值而不能对信号进行有效变分模态(variational mode decomposition,VMD)的问题,提出了一种基于稀疏指标的优化VMD法。该方法基于VMD所构建变分模型中各个分量的稀疏先验知识,实现了VMD自适应寻优K值,其将最佳K值确定为稀疏指标由上升至下降的转折点;在计算VMD各个分量的稀疏度时,考虑到不同分量间的能量差异加入了能量权值因子,最后将稀疏指标确定为分解后各分量边际谱稀疏度的平均值。仿真信号与实际信号分解试验验证表明:相较于其他两种VMD的K值确定方法,该方法确定的K值结果更为准确,实现的优化VMD自适应性更强,较其他信号分解法如经验模态分解(empirical mode decomposition,EMD)有更好的分解效果,为源信号数目未知的复合信号VMD提供了新思路;此外,噪声的鲁棒性试验证明所提基于稀疏指标的优化VMD法还具有一定的抗噪能力,较稳健,可开发应用于实际工程。 相似文献
13.
任学平李攀王朝阁张超 《振动与冲击》2018,(15):6-13
针对滚动轴承早期故障比较微弱,特征信息难以提取且变分模态分解(VMD)中分解层数k的大小需要使用者反复尝试而不能有效确定的问题,提出了改进的VMD方法,以能量差作为评价参数自适应地确定分解层数k。在此基础上,将改进的VMD与包络导数能量算子结合,提出了VMD与包络导数能量算子的轴承早期故障诊断方法。采用VMD对轴承故障振动信号进行分解,根据能量差曲线确定最佳的分解层数k;依据峭度准则,从分解得到的k个本征模态分量中选取敏感分量进行重构;并用包络导数能量算子对重构信号进行解调分析,从其能量谱中便可准确地提取轴承的故障特征信息。通过仿真信号和实验数据的分析,验证了该方法的有效性与可行性。 相似文献
14.
15.
针对滚动轴承(rolling element bearings, REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decomposition, EMD),分别实现轴承振动信号整个频带随机噪声和低频噪声的抑制,突出故障冲击周期。同时,提出基于内禀模态函数(intrinsic mode function, IMF)能量比加权的互相关系数-峭度指标用于筛选最优IMF进行信号重构,强化重构信号中的故障信息。对重构信号作用Teager能量算子(Teager energy operator, TEO),得到故障冲击特征增强的瞬时能量序列,通过功率谱分析提取轴承故障特征频率。内圈故障仿真信号和滚动体故障实测信号分析表明,该方法能够有效抑制轴承振动信号噪声,对早期故障的微弱特征有显著增强作用。 相似文献
16.
基于变分模态分解(VMD),提出一种新的结构模态参数识别方法:①通过自由振动试验或通过随机减量法从结构随机振动响应中获取结构自由衰减振动响应(FDR),并采用VMD方法从FDR中分解出结构模态响应;②通过经验包络法(EE)计算模态响应瞬时频率,并通过一种该研究新提出的方法计算模态响应瞬时阻尼比;③结构的模态振型向量可通过处理所有可用传感器得到的模态响应得到。瞬时模态频率和模态阻尼比可以捕获模态参数的任何瞬态变化。通过一系列数值和试验算例验证了该方法的有效性,突出了该方法的优势,并对该方法抗噪声性能进行了研究。研究表明,该方法适用于线性和非线性系统,且可用于识别具有密集模态和瞬态特性的系统。 相似文献
17.
18.
针对传输路径复杂和强噪声干扰条件下滚动轴承故障信号信噪比低、微弱故障特征难以提取的问题,提出一种将参数优化变分模态分解(Variational Mode Decomposition,VMD)与最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution, MCKD)相结合的滚动轴承微弱故障特征提取方法。首先,利用经麻雀搜索算法(Sparrow Search Algorithm, SSA)优化的VMD对故障信号进行自适应分解,构建加权峭度指标以筛选有效模态分量;然后对有效模态分量利用经SSA优化后的MCKD进行增强;最后,对增强后的信号进行包络解调分析,提取出轴承故障特征频率。实验和工程实际案例分析表明,所提出的方法能够自适应增强轴承信号中的微弱冲击成分,有效提取出强噪声背景下的滚动轴承微弱故障特征。 相似文献
19.
针对变分模态分解(Variational Mode Decomposition,VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function,IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该方法首先对原始故障信号进行变分模态分解,通过信息熵最小值原则对其参数进行优化,获得既定的若干IMF分量;在优化参数时获得信息熵最小值所在的IMF,选取其为有效IMF分量进行包络解调分析,提取轴承故障特征频率。通过轴承仿真信号和实际数据分析,表明该方法能够提取滚动轴承早期故障信号的微弱特征,并实现故障的准确判别。 相似文献
20.
针对转子裂纹故障特征难于提取,提出了一种基于蝙蝠算法(BA)优化参数的变分模态分解(VMD)诊断转子裂纹故障的方法。将蝙蝠算法应用于变分模态分解,对变分模态分解中参数K和惩罚因子α进行全局寻优,用BA搜索VMD的最优(α,K)组合,迭代过程采用局部极小包络熵为适应度值。仿真分析的结果表明,BA-VMD方法能很好的完成VMD参数K和α的自适应获取,且在抗模态混叠和抗噪声干扰方面的具有明显优势,最后采用BA-VMD方法对裂纹转子的位移信号进行了实验分析,分析结果表明,采用BA-VMD方法处理后的频谱能充分反映出信号的频率特征,且通过频率结构特征很容易识别出转子裂纹的故障特征。 相似文献