首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
针对车轮在运行过程中的典型运用工况,采用有限元方法数值模拟了不同运用条件下车轮的机械应力分布,选取辐板最高应力部位作为裂纹的萌生位置。根据线弹性断裂力学理论研究了辐板裂纹在二轴载荷下的应力强度因子和T应力,最后结合Paris疲劳裂纹扩展方程及裂纹扩展门槛值,得到了二轴载荷下辐板表面裂纹的扩展特性和规律。从而得出了二轴载荷条件对辐板表面裂纹扩展的影响。分析结果表明:典型工况下,车轮辐板外侧处于受压状态,内侧处于受拉状态而且变化幅值较大。车轮辐板的内外表面的应力不同,使得辐板同时承受了弯矩,并且弯矩的周向分量和径向分量近乎于正比。由于T应力的影响,车轮辐板裂纹扩展速度比不考虑此应力时的值较为偏低。分析结果对预防车轮疲劳失效、优化车轮设计、保障行车安全,具有重要意义。  相似文献   

2.
为了解决交通信号支撑结构疲劳裂纹扩展的问题,利用ANSYS软件对已有的信号支撑结构静力和疲劳试验分别建模分析,并用有限元结果与试验结果进行对比。研究表明:静力加载模型中,圆钢管上最大Mises应力为413.7 MPa,有限元结果与试验结果较为接近;裂纹最深点△K△K值较小,△Keff△K几乎完全相等,裂纹扩展寿命主要受△K值的影响;远离裂纹端点处各点的△K值呈现出M形状;Bowness公式计算得到的裂纹最深点的△K值比有限元结果大,利用该公式预测交通信号支撑结构端板与圆钢管焊接节点的疲劳寿命较为保守。  相似文献   

3.
有机玻璃疲劳裂纹扩展   总被引:3,自引:0,他引:3  
文中采用CT(Compact Tension)试样对MDYB-3有机玻璃在-50℃~90℃范围内进行了裂纹扩展试验研究.基于金属裂纹扩展公式,结合有机玻璃疲劳裂纹扩展特性,得到了描述有机玻璃裂纹扩展行为的公式.将其与有机玻璃在不同温度下的试验结果对比,发现得到的公式能够较完整地描述有机玻璃疲劳裂纹在各个阶段的扩展行为.  相似文献   

4.
金属腐蚀疲劳裂纹扩展速率的近似计算   总被引:1,自引:0,他引:1  
根据腐蚀疲劳与纯疲劳间的关系 ,利用疲劳学科研究新结果 ,导出了腐蚀疲劳裂纹扩展速率的近似计算表达式 ,并给出了计算示例。结果表明 ,该近似表达式适用于A型腐蚀疲劳裂纹扩展速率的计算。关键词 腐蚀疲劳 裂纹扩展速率 应力腐蚀 有效强度因子  相似文献   

5.
扩展有限元法在裂纹扩展问题中的应用   总被引:2,自引:0,他引:2  
扩展有限元法(Extended finite element method,XFEM)是近几年发展起来的数值方法,属于传统有限元法的扩展,具有区别于传统有限元法的优点,在求解不连续断裂问题上具有更高的精度及效率。本文针对影响裂纹扩展的主要因素进行探讨,继而介绍扩展有限元的基本原理,并对其在裂纹扩展中的应用进行综述,同时对该方法的下一步研究进行了展望。  相似文献   

6.
疲劳裂纹扩展行为是现代材料研究中重要的内容之一.论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响.总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了"塑性钝化模型"和"裂纹闭合效应"与实际观察结果存在的矛盾.最后,对钛合金疲劳裂纹扩展研究的内容和研究结果进行了概述.  相似文献   

7.
镁合金作为结构材料在汽车、航空、航天等领域有广泛的应用前景,在实际服役过程中存在高频振动荷载的长期作用。为解决镁合金结构件在长寿命服役条件下的安全与可靠性问题,基于旋转弯曲和超声振动加载两种疲劳实验方法,研究WE94镁合金在高周与超高周区间(104~109周次)的疲劳强度与失效机制。结果表明,疲劳裂纹萌生于沿基面的滑移带并在断裂面上形成解理状“小平面”形貌;而在疲劳小裂纹扩展初期,裂纹面存在大量细小平行状条带,该条带于裂纹尖端与孪晶带的交互作用过程中形成。因此,镁合金疲劳小裂纹的萌生与扩展过程对材料局部微结构形态与变形机制表现出密切的相关性。  相似文献   

8.
王春生  段兰  郑丽  胡景雨 《工程力学》2013,30(6):212-216
以国产桥梁用高性能钢HPS485W为研究对象,对7.5mm、12.5mm和19.5mm的HPS485W紧凑拉伸试样分别在应力比R=0.1、R=0.5和R=0.8的疲劳荷载下进行疲劳裂纹扩展速率(da/dN)试验,采用七点递增多项式的方法进行局部拟合求得试样的疲劳裂纹扩展速率。与传统桥梁用钢14MnNb相比,该文试验测得高性能钢HPS485W具有更优越的忍受疲劳裂纹扩展能力。试验结果表明:试样厚度是影响疲劳裂纹扩展速率的关键因素;对同一厚度的试样,疲劳裂纹扩展速率随着应力比R的增大而增大。此外,对19.5mm试样在荷载比R=0.1的情况下,进行工程门槛值的试验测定和理论门槛值的数值求解,分析求得19.5mm的HPS485W的理论门槛值为7.22MPa·m1/2。该文试验得到的HPS485W疲劳裂纹扩展曲线,可用于高性能钢桥的抗疲劳、防断裂设计与寿命预测。  相似文献   

9.
《中国测试》2015,(7):1-5
针对传统断裂测试试样受构型的限制往往尺寸较大,无法满足小尺寸金属管疲劳断裂行为测试要求的问题,设计新构型小尺寸试样。并基于有限元分析和柔度理论,建立含径向双边对称裂纹圆环(O-ring with double radial symmetric cracks,DOR)小试样的裂纹长度预测公式和应力强度因子公式,进而提出DOR小试样的疲劳裂纹扩展试验新方法。应用5083-H112铝合金加工成含径向裂纹小管试样和标准CT试样,开展疲劳裂纹扩展速率对比试验。结果显示,基于DOR试样得到的5083-H112铝合金的疲劳裂纹扩展规律与CT试样的试验结果相吻合,证明新方法的有效性。经过对试样端口的测量和分析,试样两侧对称裂纹的扩展量基本一致,说明对称裂纹满足唯一性要求,且不同于CT试样,该圆环试样裂纹前缘非常平直,表明圆环构型试样沿厚度方向的约束状态更加接近。  相似文献   

10.
腐蚀疲劳裂纹扩展研究近况   总被引:1,自引:0,他引:1  
综述了腐蚀疲劳裂纹扩展的研究现状,对腐蚀疲劳今后的发展趋势作了展望。  相似文献   

11.
Fatigue crack propagation (FCP) behaviour of 4003 ferritic stainless steel was investigated using infrared thermography. Four stages of superficial temperature evolution were observed during the FCP tests: an initial temperature decrease stage, a temperature equilibrium stage, a slow temperature increase stage and an abrupt temperature increase stage; a thermal model is developed to explain the observed temperature evolution. The experimental results indicate that: when the range of stress intensity factor (ΔK) is at a low level where the crack is located in slow propagation region, thermoelastic effect will be in dominant status; when the ΔK is at a high level where the crack is located in stable propagation region, the temperature rise can be used to describe FCP rate. The fatigue fracture surfaces were examined using scanning electron microscope (SEM) in order to understand the effect of the fatigue mechanisms on temperature variation.  相似文献   

12.
The fatigue life of cracked steel members can be greatly extended by externally attached carbon fibre reinforced plastics (CFRP), which reduces the stress intensity factors (SIFs) at the crack tip. Access to cracks is sometimes limited and the CFRP has to be attached away from the cracks. There is a lack of knowledge on SIFs for such strengthening scheme. This paper presents the effects of CFRP bond locations on the Mode I SIF of centre‐cracked tensile (CCT) steel plate. The Mode I SIF at the crack tip is calculated using the finite element (FE) models. A correction factor is introduced as a function of CFRP bond location and crack length. The FE results are compared and agree well with experimental tests conducted by the authors. By combining with another two factors (one considering CFRP mechanical properties and the other considering CFRP bond width) derived previously by the authors, SIF formulae are proposed for CFRP reinforced CCT steel plates.  相似文献   

13.
Recent accidents involving railway rails have aroused demand for improved and more efficient rail maintenance strategies to reduce the risk of unexpected rail fracture. Numerical tools can aid in generating maintenance strategies: this investigation deals with the numerical modelling and analysis of short crack growth in rails. Factors that influence the fatigue propagation of short surface‐breaking cracks (head checks) in rails are assessed. A proposed numerical procedure incorporates finite element (FE) calculations to predict short crack growth conditions for rolling contact fatigue (RCF) loading. A parameterised FE model for the rolling‐sliding contact of a cylinder on a semi‐infinite half space, with a short surface breaking crack, presented here, is used in linear‐elastic and elastic–plastic FE calculations of short crack propagation, together with fracture mechanics theory. The crack length and orientation, crack face friction, and coefficient of surface friction near the contact load are varied. The FE model is verified for five examples in the literature. Comparison of results from linear‐elastic and elastic–plastic FE calculations, shows that the former cannot describe short RCF crack behaviour properly, in particular 0.1–0.2 mm long (head check) cracks with a shallow angle; elastic–plastic analysis is required instead.  相似文献   

14.
A new finite element (FE) framework for fatigue crack propagation (FCP) analysis is proposed. This framework combines the simplicity of standard industrial FCP analysis with the generality and accuracy of a full FE analysis and can be implemented on a small computer by combining standard existing computational tools. In this way it constitutes an attractive alternative to existing approaches. The framework is based on linear elastic fracture mechanics and on FE mesh adaptation. Some novel features are introduced in several of its steps in order to make it efficient and at the same time reasonably accurate. Various computational aspects of the scheme are discussed. A few two‐dimensional numerical examples involving FCP in thin sheets under plane‐stress conditions are presented to demonstrate the performance of the framework. Some of the numerical results are compared to those of laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
通过计算裂纹尖端应力强度因子及疲劳裂纹扩展速率da/d N,由C.Paris模型推导出安全寿命Nf,由Bathias公式计算"哑铃"状钛合金试样的裂纹扩展寿命。通过理论计算和有限元分析超声疲劳"哑铃"状试样,得出应力最大位置。利用有限元仿真和实验数据分析TC4钛合金疲劳寿命。在20 k Hz的超声疲劳试验中,试样的断口位置表明:TC4钛合金材料内部缺陷是试样萌生裂纹使断裂位置偏离最大应力处的主要原因。并得出疲劳裂纹萌生阶段寿命决定"哑铃"状试样的疲劳寿命。  相似文献   

16.
In this paper, the influence of the residual compressive stresses induced by roller burnishing on fatigue crack propagation in the fillet of notched round bar is investigated. A 3D finite element simulation model of rolling has allowed to introduce a residual stress profile as an initial condition. After the rolling process, fatigue loading has been applied to three‐point bending specimens in which an initial crack has been introduced. A numerical predictive method of crack propagation in roller burnished specimens has also been implemented. It is based on a step‐by‐step process of stress intensity factor calculations by elastic finite element analyses. These stress intensity factor results are combined with the Paris law to estimate the fatigue crack growth rate. In the case of roller burnished specimens, a numerical modification concerning experimental crack closure has to be considered. This method is applied to three specimens: without roller burnishing, and with two levels of roller burnishing (type A and type B). In all these cases, the computational finite element predictions of fatigue crack growth rate agree well with the experimental measurements. The developed model can be easily extended to crankshafts in real operating conditions.  相似文献   

17.
Surface fatigue crack propagation is the typical failure mode of engineering structures. In this study, the experiment on surface fatigue crack propagation in 15MnVN steel plate is carried out, and the crack shape and propagation life are obtained. With the concept of ‘equivalent thickness’ brought into the latest three‐dimensional (3D) fracture mechanics theory, one closure model applicable to 3D fatigue crack is put forward. By using the above 3D crack‐closure model, the shape and propagation life of surface fatigue crack in 15MnVN plates are predicted. The simulative results show that the 3D fracture mechanics‐based closure model for 3D fatigue crack is effective.  相似文献   

18.
Fatigue fracture surfaces were examined with a scanning electron microscope to investigate the influence of the different microstructure between weld metal and heat affected zone. The specimens were centre-cracked type transverse butt welded joints. The relationship between macroscopic fatigue crack propagation rate and the stress intensity factor range is the same in spite of the difference in microstructure for both materials. It is shown that the fractographic appearance changes with microstructure even in the very low growth rate region near fatigue threshold. This suggests that fractographic appearance is not necessarily a guide to the rate of fatigue crack growth.  相似文献   

19.
An approach is presented, based on the weight function method to calculate the stress intensity factors of semielliptical surface cracks originating from the notch root of welded joints. The stress distribution along the potential crack plane required in the weight function method is constructed on the basis of the notch stress intensity factor approach in the highly stressed zone and of the equivalent linearized stress distribution and is compared with those determined by the finite element method and existing predictions. The stress intensity factors determined by the proposed approach are compared with available solutions. These comparisons show that the results determined by the proposed approach generally agree well with the existing solutions. For the cases where the agreement is poor, the reasons are identified. One important feature of the proposed approach is that the stress singularity at sharp notch tip can be considered, which cannot be appropriately simulated by the finite element method. Finally, to demonstrate the applicability of the proposed approach, the fatigue life and the fatigue crack shape evolution of welded joints are predicted and they are compared with experimental results.  相似文献   

20.
ABSTRACT The behaviour of fatigue crack propagation of rectangular spheroidal graphite cast iron plates, each consisting of an inclined semi‐elliptical crack, subjected to axial loading was investigated both experimentally and theoretically. The inclined angle of the crack with respect to the axis of loading varied between 0° and 90°. In the present investigation, the growth of the fatigue crack was monitored using the AC potential drop technique, and a series of modification factors, which allow accurate sizing of such defects, is recommended. The rate of fatigue crack propagation db/dN is postulated to be a function of the effective strain energy density factor range, ΔSeff. Subsequently, this concept is applied to predict crack growth due to fatigue loads. The mixed mode crack growth criterion is discussed by comparing the experimental results with those obtained using the maximum stress and minimum strain energy density criteria. The threshold condition for nongrowth of the initial crack is established based on the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号