首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探究脉冲偏压对TiAlSiN涂层结构及力学性能、耐磨性能、抗氧化性能的影响规律及机制。方法 采用阴极电弧离子镀膜技术,调控偏压参数并在M2高速钢上沉积TiAlSiN涂层,利用SEM、XRD、3D轮廓仪、金相显微镜、划痕仪、摩擦磨损试验仪等仪器及高温氧化试验,对涂层结构及性能进行分析表征。结果 偏压为50 V时,涂层主要为AlN相;偏压高于75 V时,涂层以固溶的(Ti,Al)N相为主,TiAlSiN涂层存在较强的(200)面择优取向。偏压由50 V增大至150 V时,涂层的致密性增加,表面粗糙度先降低后上升,涂层结合力先增大后降低。TiAlSiN涂层的磨损方式主要是磨粒磨损,受物相结构、涂层致密性的影响,偏压为100~150 V时,涂层的耐磨性能优异。涂层1000 ℃氧化4 h后,表面氧化程度不同,主要受物相结构、致密性、表面孔隙的多重影响,hcp-AlN相比(Ti,Al)N相更易氧化;偏压增大使得涂层沉积更为致密,氧化层深度变浅;涂层孔隙增加,表面形成的Al2O3团簇增多。结论 偏压100 V下TiAlSiN涂层的综合性能最优,涂层结合力为46.7 V,硬度为3276HV0.025,表面粗糙度最低,耐磨性能较好且高温下抗氧化性能最强。  相似文献   

2.
目的 为了大幅提高机械零部件表面的硬度和耐磨性能,探究制备具有低摩擦因数、高硬度和良好耐磨性的MoCN涂层。方法 采用中频磁控溅射技术在不锈钢基板和硅片上,通过控制C2H2气体(纯度99.99%,0、3、6、9 mL/min)的量来制备具有不同含碳量的MoCN纳米复合涂层。通过X射线衍射仪和拉曼光谱仪分析涂层主要的物相结构,采用扫描电子显微镜(SEM)和原子力显微镜(AFM)表征涂层的表面和断面形貌。采用连续刚度法,利用纳米压痕仪测试涂层的纳米硬度和弹性模量。利用自动划痕试验机和光学显微镜(OM)评估涂层与基体之间的黏附强度。最后利用多功能摩擦磨损试验机进行磨损试验,通过SEM对试验后的涂层进行磨损形貌分析,并对涂层的摩擦学性能进行评价。结果 涂层微观组织和力学性能表征结果表明,MoCN涂层由MoN相和非晶态碳相组成。随着涂层中碳含量的增加,涂层与基体之间的结合力和涂层表面的粗糙度都呈现逐渐减小的趋势,其涂层的划痕失效临界载荷和表面粗糙度的最小值分别为6.90 N和6.80 nm,但是涂层的纳米硬度从7.36 GPa增至10.23 GPa。摩...  相似文献   

3.
采用磁过滤真空阴极弧在ZL109合金表面沉积由TiAl和TiAlN组成的TiAlN多层涂层,并系统研究偏压对涂层微观结构和性能的影响。结果表明,涂层具有以TiAlN相为主的多相结构。随着偏压的增大,由于原子迁移率和晶格畸变的增加,TiAlN择优取向由(200)晶面向(111)晶面转变。同时,涂层的硬度、弹性模量和附着力表现出相同的变化趋势,即先增大后减小。当偏压为75 V时,TiAlN涂层具有最高的硬度(~30.3 GPa)、弹性模量(~229.1 GPa)、附着力(HF 2)和最低的磨损率(~4.44×10-5 mm3/(N·m))。与未涂覆ZL109合金相比,TiAlN涂层合金表面的力学和摩擦学性能得到有效提高。  相似文献   

4.
本文中,采用反应磁控溅射技术在304不锈钢基片上沉积Ti-Al-Si-Cu-N涂层。通过扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪、划痕仪和球盘式摩擦磨损试验机研究了不同的基材温度对涂层结构和摩擦学性能的影响。结果表明:随着沉积温度从室温升至250 oC,涂层变得表面平滑,结构致密。硬度和弹性模量随沉积温度的升高而升高。划痕实验表明:当沉积温度分别为室温,150 oC 和250 oC时,临界载荷为3.85 N, 3.45 N 和5.10 N。当沉积温度为250 oC时,涂层的摩擦系数和磨损量最小,磨损机制主要为磨粒磨损摩擦过程中产生的磨屑主要来自GCr15不锈钢珠。在较低的沉积温度下,涂层的磨损机理主要为脆性断裂和磨粒磨损。  相似文献   

5.
王璐  金永中  林修洲  陈昌浩 《表面技术》2017,46(11):237-240
目的采用多弧离子镀膜技术在硬质合金基体表面沉积TiAlSiN涂层,研究占空比参数对TiAlSiN涂层的表面形貌和力学性能的影响。方法使用扫描电子显微镜对涂层的形貌进行观察,使用自动划痕仪、纳米压痕仪对涂层的力学性能进行检测。结果占空比在10%~70%范围内增加,离子轰击得到加强,涂层表面得到很好的改善,大颗粒与微坑缺陷数量逐渐减少。当占空比增大到90%时,大颗粒和微坑缺陷数量反而增多。结论随着占空比的增加,纳米硬度、弹性模量和涂层结合力均先增大后减小,占空比为50%时,分别达到最大值48.15 GPa、518.24 GPa、50.55 N。  相似文献   

6.
陈恩  冯长杰 《表面技术》2017,46(1):106-110
目的探索磁控溅射制备的Ti-Al-Si-N涂层在不同环境温度下的摩擦学性能。方法利用磁控溅射技术,在AISI304不锈钢表面制备了Ti-Al-Si-N涂层,采用扫描电镜、能谱仪和X射线衍射仪研究了涂层的成分与微观结构,利用HT-1000型高温摩擦磨损试验机,以直径为5 mm的Al_2O_3球作为摩擦副,研究了Ti-Al-Si-N涂层在室温、200、400、600℃时的摩擦学性能。结果磁控溅射制得的Ti-Al-Si-N涂层表面平整、致密,具有典型的柱状晶结构;在室温、200、400、600℃的环境温度下,涂层的摩擦系数分别为0.6、0.35、0.25和0.2,磨损体积分别为0.319、0.232、0.0149和0.0136 mm~3。涂层的摩擦系数和磨损体积均随温度的升高而降低。结论随着测试温度的升高,磨痕区域生成越多的以氧化钛和氧化铝为主的氧化物,其具有一定的减摩作用。在室温下,涂层的磨损机理主要为疲劳剥落,200℃时为磨粒磨损,400℃时为磨粒磨损和氧化磨损,600℃时主要为氧化磨损。  相似文献   

7.
采用反应磁控溅射技术在304不锈钢基片上沉积Ti-Al-Si-Cu-N涂层。通过扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪、划痕仪和球盘式摩擦磨损试验机研究了不同基材温度(沉积温度)对涂层结构和摩擦学性能的影响。结果表明:随着沉积温度从室温升至250℃,涂层表面变得平滑,结构致密。硬度和弹性模量随沉积温度的升高而升高。划痕试验表明:当沉积温度分别为室温,150和250℃时,临界载荷为3.85,3.45和5.10 N。当沉积温度为250℃时,涂层的摩擦系数和磨损速率最小,摩擦过程中产生的磨屑主要来自GCr15不锈钢珠。在较低的沉积温度下,涂层的磨损机理主要为疲劳断裂和磨粒磨损,而250℃沉积的涂层的磨损机制主要为磨粒磨损。  相似文献   

8.
目的通过调节偏压,改善无氢DLC薄膜的微观结构,提高其力学性能和减摩抗磨性能。方法采用离子束辅助增强磁控溅射系统,沉积不同偏压工艺的DLC薄膜。采用原子力显微镜(AFM)观察薄膜表面形貌,采用拉曼光谱仪对薄膜的微观结构进行分析,采用纳米压痕仪测试薄膜硬度及弹性模量,采用表面轮廓仪测定薄膜沉积前/后基体曲率变化,并计算薄膜的残余应力,采用大载荷划痕仪分析薄膜与不锈钢基体的结合力,采用TRB球-盘摩擦磨损试验机评价薄膜的摩擦学性能,采用白光共聚焦显微镜测量薄膜磨痕轮廓,并计算薄膜的磨损率。结果偏压对DLC薄膜表面形貌、微观结构、力学性能、摩擦学性能都有不同程度的影响。偏压升高导致碳离子能量升高,表面粗糙度呈现先减小后增加的趋势,-400V的薄膜表面具有最小的表面粗糙度且C─C sp^3键含量最多,这也导致了此偏压下薄膜的硬度最大。薄膜的结合性能与碳离子能量大小呈正相关,-800 V时具有3.98 N的最优结合性能。不同偏压工艺制备的薄膜摩擦系数随湿度的增加,均呈现减小的趋势,偏压为-400V时,薄膜在不同湿度环境中均显示出最优的摩擦学性能。结论偏压为-400 V时,DLC薄膜综合性能最优,其表面粗糙度、硬度、结合力和摩擦系数分别为2.5 nm、17.1 GPa、2.81 N和0.11。  相似文献   

9.
目的 研究沉积偏压对MoN涂层微观结构、性能,以及在柴油介质中摩擦学行为的影响机制。方法 采用磁控溅射技术在304不锈钢基体上沉积MoN涂层。利用X射线衍射仪、X射线光电子能谱仪、X射线能谱仪、原子力显微镜、纳米压痕仪、薄膜应力测试仪和电化学工作站研究MoN涂层的微观结构、成分、表面粗糙度、力学性能、耐腐蚀性能。利用球−盘式摩擦实验机和激光拉曼光谱仪对MoN涂层在0号柴油中的摩擦学行为及机制进行研究。结果 随着偏压的增加,涂层的厚度和膜−基结合力均呈先增大后减小的趋势;涂层的表面粗糙度、内应力和硬度呈先升高后降低的趋势。在偏压为−120 V时,沉积的γ-Mo2N涂层组织致密、表面光滑(Sa 7.78 nm)、硬度高(18.02 GPa)、膜−基结合力高(253 mN)。随着偏压的增加,涂层的摩擦因数呈先减小后增加的趋势。在偏压为−120 V时,沉积的γ-Mo2N涂层的摩擦因数和磨损率均最小,分别为0.10和1.8×107 mm3/(N∙m)。拉曼光谱分析结果表明,在摩擦催化作用下,柴油在磨痕表面产生了碳基膜。此外,通过电化学腐蚀分析发现,在偏压−120 V下沉积的γ-Mo2N涂层具有优异的耐腐蚀性能。结论 MoN涂层结构、性能受到偏压的影响显著。柴油在摩擦催化作用下发生了降解,形成了碳基膜,这有利于降低MoN涂层的摩擦因数和磨损率。  相似文献   

10.
采用直流反应磁控溅射技术在1Cr18Ni9Ti奥氏体不锈钢表面沉积Cr N涂层,利用SEM、XRD、显微硬度仪、划痕仪和摩擦磨损试验仪研究了基体温度对涂层组织结构、力学性能和摩擦磨损性能的影响。结果表明,Cr N涂层主要呈现出fcc结构,并存在(111)晶面择优取向,基本温度为100℃时制备的涂层(111)和(220)取向竞争生长,300℃时制备的涂层(200)晶面生长增强;涂层的表面晶粒主要呈现三棱锥形貌;基体温度对涂层的力学性能影响较大,300℃时制备的涂层显微硬度和结合力的最高值分别达到1900 HV和50 N;涂层磨损率随基体温度的升高而降低。  相似文献   

11.
目的 研究基底偏压对AlCrVN涂层微结构及力学性能的影响。方法 采用电弧离子镀技术,使用合金靶AlCrV,纯N2作为引弧介质和氮源,在不同的基底偏压下制备AlCrVN涂层,对AlCrVN涂层的物相结构、微观形貌、硬度、摩擦因数及磨损率进行测试分析,作为对比制备了AlCrN涂层。结果 AlCrVN涂层为柱状晶结构,由面心立方CrN为基础的(CrV)N置换固溶体相和Cr2N六方相2种晶相组成,随着基底偏压的增大,涂层衍射峰强度及位置变化不明显;涂层表面的大颗粒数量减少,凹坑增多;涂层硬度由50V时的22 GPa增大到150 V时的24.2 GPa,200 V时硬度值减小到22 GPa;摩擦因数由0.42增大到0.71;磨损率由6.4×10-7 mm3/(N·m)逐渐增大到13.2×10-7 mm3/(N·m)。结论 基底偏压对AlCrVN涂层性能影响较大,低偏压(50V)时,涂层的摩擦因数、磨损率最低,耐磨性能最好。含V元素的AlCrVN涂层的力学和摩擦学性...  相似文献   

12.
本文通过在TC11钛合金上利用电弧离子镀技术制备了铬铝氮(CrAlN)涂层。采用X射线衍射(XRD),扫描电子显微镜(SEM),能量色散X射线光谱(EDX),纳米压痕仪等对CrAlN涂层微观结构和机械性能(如硬度和弹性模量)的影响进行了分析。为了研究偏压对CrAlN涂层固体颗粒抗侵蚀性的影响,还进行了一系列固体颗粒侵蚀实验。结果发现,随着偏压从0V增加至200V,CrA1N涂层的择优生长取向逐渐从(200)转变为(111)晶面。硬度从15.1 GPa增加至接近20 GPa。同时,表面逐渐平整,大颗粒和针孔的数量减少,对CrAlN涂层的抗侵蚀性能均有一定影响。偏压150V时,CrAlN涂层获得最小侵蚀速率,其在30°时为0.032μm/ g,90°时为1.869μm/ g。这些结果表明,选择适当的偏压,CrAlN涂层能够获得更优异的固体颗粒侵蚀抗性。  相似文献   

13.
目的探究TiAlSiN涂层经过不同热震次数后,其组织结构及性能的变化规律及机制。方法采取电弧离子镀技术在单晶硅和M2高速钢(W6Mo5Cr4V2)表面沉积TiAlSiN涂层,采用加热-水淬循环的方法进行热震试验。采用3D表面轮廓仪、扫描电子显微镜(SEM)表征涂层显微形貌,用金相显微镜测定膜/基结合力,用能谱仪(EDS)分析涂层元素含量变化,用X射线衍射仪(XRD)表征物相结构,用划痕仪和硬度计测量涂层力学性能,用摩擦磨损试验仪、光学显微镜探究涂层摩擦学性能及摩擦磨损机制。结果随着热震次数的增加,涂层表面产生的TiO颗粒尺寸增大,含量增多,粗糙度增加。XRD衍射峰向小角度发生偏移,但仍保持立方结构。涂层的力学性能变差,硬度值由2066HV_(0.025)下降至1447HV_(0.025),结合力由常温的71.8 N下降至33.9 N,结合力等级由常温的HF1降至HF4。此外,30、40、50次热震后,涂层展现出比常温下更优异的耐磨性能,摩擦系数由常温的0.571分别降低至0.427、0.389、0.273,磨损率由常温时的1.4×10~(-14) m~3/(N·m)分别降至1.01×10~(-14)、0.93×10~(-14)、0.71×10~(-14)m~3/(N·m),磨损类型主要为粘着磨损与氧化磨损。结论 TiAlSiN涂层在600℃下具备优异的抗热震性能,多次冷-热循环后仍为立方结构。随着热震次数的增加,TiAlSiN涂层表面质量及力学性能下降,但摩擦磨损试验中,由于涂层表面多次热震形成的氧化物起到润滑效果,有效减缓了涂层与摩擦球的剧烈接触,使TiAlSiN涂层的耐磨减摩性能提高。  相似文献   

14.
采用电弧离子镀技术在AISI304不锈钢表面制备TiAlN和TiAl Si N涂层。以Al2O3球为对摩材料,使用球-盘式摩擦磨损试验机测试涂层在室温(RT)、300℃、600℃恒温和RT~600℃、600→300℃变温环境中的摩擦学性能。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、显微硬度计研究涂层的表面形貌、微观结构、硬度和摩擦学性能。结果表明:TiAlN和TiAl Si N涂层的主要结构为面心立方TiAlN相,硬度值分别为1 631 HV0.05和2 044 HV0.05。在300℃恒温和RT~600℃升温环境中,涂层磨损剧烈,均被磨穿,磨损机理以粘着磨损和疲劳断裂为主。600℃条件下,TiAlN涂层发生了以"点蚀"为主的氧化磨损,氧化产物起到了很好的润滑作用,摩擦因数为0.5。Si元素的加入使涂层的抗氧化性增强,在600℃和600→300℃的环境中,磨痕表面生成具有保护作用的氧化膜,涂层的耐磨性提高。  相似文献   

15.
本文利用PVD技术在不同偏压下制备了一系列Ni3Al薄膜,通过XPS、XRD、SEM、AFM、纳米压痕仪以及显微硬度计等详细研究了偏压对于Ni3Al薄膜组分、沉积率、微观结构、硬度和断裂韧性的影响。结果表明:施加偏压可以增大溅射过程中被离化部分带电离子的动能,从而显著提高Ni3Al薄膜的沉积率、内部结构的致密性以及表面平整性;此外,适当偏压的引入可以诱导生成非晶包裹纳米晶的纳米复合结构,这种包裹态的双相纳米复合结构提供了大量晶界,增强了对位错的阻碍作用,位错堆积在晶界处无法继续运动从而导致硬度的增加。同时,大量存在的晶界可以消耗裂纹传播的能量、抑制宏观裂纹的产生,从而显著增强Ni3Al薄膜的断裂韧性。  相似文献   

16.
由于真空度的要求,制备氮化物涂层时将不可避免的会有氧的存在,因此了解氧元素对涂层性能的影响至关重要。采用高功率脉冲磁控溅射(HIPIMS)技术在Ar/N2/O2混合气氛下制备AlCrSiON涂层,研究氧含量(0%~30.4%,原子数分数)对涂层结构、力学性能和摩擦学性能的影响及作用机制。结果表明,AlCrSiN涂层由fcc-Cr N、β-Cr2N和hcp-Al N组成,AlCrSiON则由(Cr,Al)N、立方Cr2N和(Cr,Al)(O,N)组成。AlCrSiN涂层硬度为(14.3±1.8)GPa,随着氧含量增加至24.3%,涂层硬度增加至(20.1±3.0)GPa;继续增加氧含量则将导致涂层硬度下降。当环境温度由室温增加至400℃,涂层摩擦因数由0.6~0.7增加至0.9;温度升至800℃,涂层摩擦因数降至0.4。氧含量对涂层高温摩擦因数的影响较小,对涂层的磨损率却有着重要影响。当氧含量为30.4%时,AlCrSiON涂层具有最优耐磨损性能。  相似文献   

17.
研究在不同工艺条件下用直流反应磁控溅射技术在T10衬底上制备Cr-N涂层,并采用光电子能谱仪和XRD依次分析Cr-N涂层的表面结构和工艺参数对Cr-N涂层成分及相组成的影响。结果表明,Cr-N涂层在存放一段时间后表面产生复杂的Cr2O3相以及Cr(O2 N)x相;常温下随着N2含量的增加,涂层相结构逐渐由Cr转变为化学比的CrN相。当N2含量为33-3%时,Cr-N涂层的相成分主要为Cr2N+CrN。并发现衬底偏压直接影响Cr-N系涂层的晶态及取向特征,当偏压增加到-130V时,Cr-N涂层中β-Cr2N相结构逐渐转变为(110)和(300)取向结构。  相似文献   

18.
采用电弧离子镀技术在不同直流偏压下沉积Al-Cr-Si-N涂层,研究基体偏压对涂层成分、微观结构和性能的影响。结果表明:Al-Cr-Si-N涂层以密排六方结构和面心立方结构的AlN相为主,随着基体负偏压增加,涂层的衍射峰整体向小角度方向偏移:涂层内残余压应力逐渐增加,最大值为-0.77 GPa;涂层硬度和摩擦系数变化不明显。当基体负偏压为-40V时,Al-Cr-Si-N涂层的特征参数H/E和H~3/E~(*2)均达最大值,分别为0.15和0.37GPa,此时涂层具有最佳的耐磨性能,摩擦系数亦最低。  相似文献   

19.
MoN薄膜是一种具有潜在应用价值的薄膜材料,但对于其结构和性能的研究还较少。采用直流磁控溅射技术在304不锈钢基体表面沉积MoN薄膜,研究了脉冲偏压对MoN薄膜结构和性能的影响,并系统研究了MoN薄膜在不同摩擦条件下的摩擦磨损行为。采用X射线衍射仪和扫描电镜分析薄膜的晶相结构、晶粒尺寸、表面及断面形貌,采用HMV-2T显微硬度仪测试薄膜的显微硬度。采用UMT-TriboLab多功能摩擦磨损试验机评价薄膜的摩擦磨损性能,并用扫描电镜观察磨损表面,分析其磨损机制。结果表明:脉冲偏压显著影响直流磁控沉积的MoN薄膜的晶相结构、表面形貌、断面结构、硬度和摩擦磨损性能;随脉冲偏压的增大,MoN薄膜的膜厚、硬度都先增大后减小,而薄膜的磨损率却先减小后增大,其中-500 V脉冲偏压下沉积的MoN薄膜具有最高硬度为7731 N/mm2,以及最低的磨损率为5.8×10-7 mm3/(N·m)。此外,MoN薄膜在不同载荷和转速的摩擦条件下表现出不同的摩擦学行为。  相似文献   

20.
Ti-Al-Si-N涂层是在Ti-Al-N涂层基础上发展而来的一种四元复合涂层。本文综述了Si对Ti-Al-Si-N涂层微观结构、硬度、残余应力、抗氧化性能、热稳定性能、摩擦磨损性能及切削性能的影响。分析表明:Si元素能有效细化晶粒,减少柱状晶,形成新型纳米结构,从而显著提高涂层硬度,可达39 GPa;Si的原子分数超过5%后,涂层残余应力逐渐降低;Ti-Al-Si-N涂层在1 100℃下仍具有良好的抗氧化性能;Si元素使涂层的热稳定性能有很大提高,Ti-Al-Si-N涂层1 100℃氧化后硬度无显著变化;与Ti-Al-N涂层相比,添加Si元素后涂层的摩擦系数由0.7下降至0.5;Ti-Al-Si-N涂层刀具的使用寿命与Si原子分数有很大的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号