共查询到20条相似文献,搜索用时 15 毫秒
1.
高压断路器操动机构振动信号为非平稳性信号,蕴含着丰富的操动机构工作状态的信息,对操动机构工作状态的检验辨识具有重大意义。提出一种基于小波时频图和卷积神经网络的断路器故障诊断方法。对操动机构振动信号进行连续小波变换生成时频图(CWT),并对时频图进行统一压缩预处理;将预处理后的时频图作为特征图输入卷积神经网络AlexNet模型;通过对网络参数的调整,逐步改进网络模型,有监督地实现对操动机构故障状态的辨识诊断。结果表明,该方法能够有效地运用于断路器操动机构故障辨识诊断,与小波频带能量-RBF、小波频带能量-SVM的故障识别相比,故障识别准确率最高。 相似文献
2.
《工程力学》2021,38(9)
针对目前大型结构螺栓连接状态监测的困难,该文采用声音信号,提出了结合小波时频图与轻量级卷积神经网络MobileNetv2优势的螺栓松动识别方法。该方法通过对采集到的声音信号进行预处理和连续小波变换得到小波时频图,以小波时频图作为样本对轻量级卷积神经网络MobileNetv2进行训练,从而实现螺栓松动声音信号的识别。对一钢桁架模型的室外试验研究表明:该方法能实现对各种环境噪声信号,不同位置、数目和松动程度的螺栓松动声音信号的精准识别;该方法不仅识别准确率高、稳定性好,而且对计算和存储的要求低,便于应用于移动设备和嵌入式设备,为环境激励下大型复杂结构的损伤在线识别提供了新的思路。 相似文献
3.
《振动工程学报》2018,(5)
针对滚动轴承故障诊断时频特征自适应提取与智能诊断问题,提出了一种基于卷积神经网络(Convolution Neural Network,CNN)和离散小波变换(Discrete Wavelet Transform,DWT)的滚动轴承故障诊断方法。首先应用离散小波变换将信号时频特征充分展现,构造出时频矩阵;然后再利用卷积神经网络的多层特征提取网络对输入信号进行分级表达,将时频矩阵低层信号特征逐层变换形成抽象的深层特征,以获取原信号时频信息的分布式特征表达。最后在特征输出层后端添加softmax多分类器,利用反向传播(Backpropagation,BP)逐层微调结构参数,建立特征空间到故障空间的映射以生成合适的分类器,从而实现滚动轴承故障诊断。通过对不同故障类型、不同损伤程度以及不同工况下的滚动轴承进行故障诊断实验,结果证明了所提方法的可行性与有效性,并具有较好的泛化能力和稳健性。 相似文献
4.
5.
6.
盾构机(tunnel boring machine, TBM)滚刀在重载、冲击和地质复杂的环境中服役,极易发生偏磨等失效故障,因此,掌握滚刀的磨损状态、实现基于数据驱动的滚刀偏磨故障诊断并指导滚刀的运维尤为重要。提出了一种基于小波时频分析和Inception-BiGRU模型的诊断模型以提高滚刀偏磨故障诊断效率。以滚刀为研究对象,在多功能缩比滚刀试验台上进行直线破岩试验,采集滚刀破岩时产生的振动加速度信号。采用连续小波变换获取反映振动信号时频域特征的小波时频图,进而以Inception模块的不同大小卷积核自适应地提取时频图中的多尺度空间信息,并通过添加双向门控循环单元(bidirectional gated recurrent units, BiGRU)使模型可更为准确地学习到时频图中丰富的时序依赖性关系,模型的超参数由贝叶斯优化算法确定。4种不同偏磨程度滚刀的诊断试验表明所提模型能够有效提取时频图中滚刀的偏磨特征并完成滚刀偏磨状态识别,实现端到端的盾构滚刀偏磨故障诊断。模型平均诊断准确率可达到98.5%,其诊断准确度和稳定性均优于其他常用算法,证明了所提方法的可行性。 相似文献
7.
8.
9.
基于小波分析和模糊神经网络的齿轮故障诊断研究 总被引:4,自引:1,他引:4
建立齿轮故障信号采集模拟试验台,结合小波分析特征提取方法和模糊神经网络对齿轮故障进行了诊断,通过实验仿真,取得了很好的诊断结果。相比于传统的BP神经网络诊断方法,无论在诊断速度还是诊断精度上,模糊神经网络更具有优势。 相似文献
10.
引入小波变换优化神经网络,建立了凝汽器故障征兆参数集,利用小波神经网自适应能力强、收敛速度快、精度高的特点对凝汽器故障进行诊断。应用结果表明,该方法能够有效地对凝汽器故障进行准确诊断。 相似文献
11.
12.
为诊断与分析高压断路器故障, 本文提出了基于BP神经网络的高压断路器故障诊断方法。该方法利用高压断路器典型分合闸线圈电流-时间曲线, 能反映其机械故障状况的特点, 将仿真输出数据与故障编码比较获得诊断结果。该方法只需一组完整的故障数据作为网络的训练和测试输入, 就能够诊断出高压断路器操动机构是否出现异常情况, 以及确定出现故障的类型。本文以MATLAB2014b为试验平台, 用实际数据作为训练样本和测试样本进行仿真分析, 其输出结果与期望输出一致, 验证了该方法是一种有效的高压断路器故障诊断方法, 具有广阔的应用前景。 相似文献
13.
对基于神经网络方法的冷水机组故障监测效率取决于训练数据和被测数据的质量问题进行了研究。采用小波变换的方法剔除测量数据中的噪声,提高数据质量,从而提高冷水机组故障诊断效率。结果表明:采用小波变换使得各个水平故障的检测效率均得到提高,尤其水平一的故障检测效率提高明显。故障水平一检测率的提高能够及时的辨别冷水机组的故障,从而采用措施防止故障进一步恶化,对降低能源消耗、提高系统的可靠性以及保证室内舒适性具有重要的意义。通过利用ASHRAE Project提供的数据对故障诊断与检测(fault detection and diagnosis)策略进行验证,检测率明显提高。 相似文献
14.
针对传统的滚动轴承故障诊断方法依赖人工特征提取和专家经验,难以自适应提取强噪声信号微弱故障特征的问题,提出一种直方图均衡化和卷积神经网络(CNN)相结合的智能诊断方法。首先,将传感器采集到的一维振动信号通过横向插值法转换为便于模型识别的二维振动图像,利用直方图均衡化技术拉伸像素之间灰度值差别的动态范围,突出纹理细节和对比度,以增强周期性故障特征;然后构建深层CNN模型,采用优化技术降低模型参数量,逐层学习监测数据与故障状态之间的复杂映射关系。实验结果表明该方法具有高达99%以上的准确率,对不同负载下的故障信号仍具有较高的识别精度和泛化能力。 相似文献
15.
《振动与冲击》2020,(19)
近来以深度学习算法为代表的滚动轴承特征智能提取和故障辨识技术被广泛研究,但目前研究大多局限于无强干扰的轴承故障。在齿轮箱存在较强齿轮振动干扰条件下,基于此类算法的轴承故障辨识率将显著降低。为提高在较强齿轮振动信号干扰下齿轮箱轴承故障智能辨识的准确率,提出了一种基于自参考自适应噪声消除技术(SANC)和一维卷积神经网络(1D-CNN)的齿轮箱轴承故障诊断方法。首先利用SANC将齿轮箱振动信号分离为周期性信号分量成分和随机信号分量,抑制齿轮等周期强干扰成分,再通过1D-CNN对包含轴承故障特征的随机信号成分进行智能特征提取和识别,实现在齿轮振动干扰下齿轮箱轴承故障辨识率的提高。通过与不同方法的对比验证了本文所提方法的优势和有效性。 相似文献
16.
针对滚动轴承故障信号非平稳非线性且易受背景噪声干扰的特点,结合深度学习的优势,提出了一种基于卷积神经网络(CNN)的滚动轴承故障诊断法。将不同故障下多个传感器测得的1维(1D)振动信号转化为2维(2D)灰度图像作为网络输入,并将其分为训练集和测试集;将训练集输入卷积神经网络进行训练,自动提取其中的特征;测试集被用于验证学习完毕的网络的有效性,实现滚动轴承故障识别。该方法不依赖于人为经验和信号处理技术进行预先的信号特征提取,实验数据分析表明,相比于经典的支持向量机和概率神经网络方法,提出的方法识别准确率更高且更稳定。 相似文献
17.
电力变压器是电力系统中的重要组成部件,它的性能是否优越直接影响着整个电力系统的可靠安全运行。特别是对于高压电气设备而言,如何能够快速、正确的寻找并解决电力变压器发生的以及潜在的故障非常重要。本文以神经网络原理为基础,结合小波分析方法,研究电力变压器的故障诊断问题。 相似文献
18.
19.
20.
航空电源系统是机上设备的重要组成部分,任意一个环节出现故障,将会影响整个飞机系统的正常安全运行.针对神经网络收敛速度慢,易陷入局部最小的缺点,将小波神经网络结合弹性BP算法应用到电源系统故障诊断中.训练过程及仿真结果表明:小波神经网络故障诊断算法收敛时间方面表现更优,具有较高故障诊断率. 相似文献