首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对传统滚动轴承故障诊断方法存在抗噪性差、需要人工特征提取、计算量较大、对运行设备要求高的问题,提出一种基于多分支深度可分离卷积神经网络(MBDS-CNN)的滚动轴承故障诊断方法,利用深度可分离卷积和权重剪枝技术对模型尺寸进行压缩,通过多分支结构保证模型的精度,避免梯度消失现象的发生.使用模型尺寸、诊断精度、预测速度作...  相似文献   

2.
针对滚动轴承故障信号非平稳非线性且易受背景噪声干扰的特点,结合深度学习的优势,提出了一种基于卷积神经网络(CNN)的滚动轴承故障诊断法。将不同故障下多个传感器测得的1维(1D)振动信号转化为2维(2D)灰度图像作为网络输入,并将其分为训练集和测试集;将训练集输入卷积神经网络进行训练,自动提取其中的特征;测试集被用于验证学习完毕的网络的有效性,实现滚动轴承故障识别。该方法不依赖于人为经验和信号处理技术进行预先的信号特征提取,实验数据分析表明,相比于经典的支持向量机和概率神经网络方法,提出的方法识别准确率更高且更稳定。  相似文献   

3.
针对滚动轴承振动信号非平稳、非线性特点以及特征提取困难问题,提出一种基于变分模态分解(VMD)与深度卷积神经网络相结合的特征提取方法并应用于滚动轴承故障诊断.利用VMD将原始振动信号分解得到若干不同频率的限带本征模态分量,通过卷积网络中的多组卷积核自动学习各模态数据的不同特征,保证了特征提取的自适应性、全面性和多样性....  相似文献   

4.
昝涛  王辉  刘智豪  王民  高相胜 《振动与冲击》2020,39(12):142-149
针对滚动轴承信号易受噪声干扰和智能诊断模型鲁棒性差的问题,在一维卷积网络的基础上,提出基于多输入层卷积神经网络的滚动轴承故障诊断模型。相比传统卷积神经网络诊断模型,该模型具有多个输入层,初始输入层为原始信号,以最大化地发挥卷积网络自动学习原始信号特征的优势;同时可将谱分析数据在模型任意位置输入模型,以提升模型的识别精度和抗干扰能力。通过滚动轴承模拟试验,进行可行性和有效性验证,同时与人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)和典型的卷积神经模型进行对比,证明了所提出模型的优势;向测试集中加入噪声来检验模型的鲁棒性,并且运用增量学习方法提升模型在强噪声环境下的识别性能;通过滚动轴承故障实例,验证模型的识别性能和泛化能力。试验结果表明,所提出的模型提升了传统卷积模型的识别率和收敛性能,并具有较好的鲁棒性和泛化能力。  相似文献   

5.
针对目前许多基于深度学习的滚动轴承故障诊断方法在检测含有噪声的信号以及载荷变化时,其诊断性能会有所下降的问题。提出一种基于卷积胶囊网络的故障诊断方法;该模型使用两个卷积层的卷积网络直接对原始的一维时域信号进行特征提取,并将其送入胶囊网络,输出每种故障类型的诊断结果;为了验证该模型的诊断性能,选用凯斯西储大学轴承数据库来进行验证,并与常见的卷积神经网络和深度神经网络进行对比。试验结果表明,相比于其它深度学习方法,该方法在载荷变化以及信号受到严重噪声污染时,依然拥有良好的诊断性能。  相似文献   

6.
滚动轴承作为风电机组传动系统的关键部件,其健康状态监测对整个机组的安全稳定运行至关重要。针对滚动轴承的故障诊断问题,在基于先验未知盲反卷积技术的包络谱重复瞬态循环平稳性提取方法(extracting cyclo-stationarity of repetitive transients from envelope spectrum based on prior-unknown blind deconvolution technique, SEBD)的基础上,提出了一种基于粒子群算法(particle swarm optimization, PSO)寻优的SEBD滚动轴承故障诊断方法,实现SEBD滤波器长度自适应选择。以最大故障特征频率比(characteristic frequency ratio, CFR)作为适应度函数,利用PSO算法对滤波器长度进行寻优;利用获得的最优滤波器长度进行SEBD处理;根据SEBD处理后信号的包络谱特征实现轴承故障的有效识别。通过对仿真信号和德国帕德博恩大学公开轴承故障数据进行分析,验证了PSO-SEBD的有效性。通过与几种常用的诊断方法对比以及噪声环境...  相似文献   

7.
针对变工况下的滚动轴承无法获得大量带标签样本数据以及传统深度学习诊断方法识别率低的问题,提出一种基于迁移学习的卷积神经网络模型滚动轴承故障诊断方法.首先,采用短时傅里叶变换处理滚动轴承振动信号获得源域、目标域样本集;其次,利用源域样本预训练卷积神经网络模型;最后,通过目标域样本微调卷积神经网络模型实现滚动轴承故障诊断....  相似文献   

8.
针对机电装备故障诊断需要大量专家经验、故障特征识别困难的问题,在一维深度卷积神经网络基础上进行改进,构建多尺度一维深度卷积神经网络(M1DCNN),提出基于多尺度一维深度卷积神经网络的故障诊断方法:首先在网络输入层构建多个含有不同尺寸卷积核通道的特征提取层,对一维时序信号中故障特征进行多尺度特征提取,丰富智能体诊断信息...  相似文献   

9.
为提升滚动轴承在大噪声、变载荷及复杂工况下故障诊断的准确率,考虑被采信号具有时间多尺度特性,提出多尺度卷积神经网络(MTSC-CNN),开发一种端到端的故障诊断系统.为验证MTSC-CNN方法的有效性,通过实验数据,对11种含故障类型、损伤程度不同以及4种存在故障混合的轴承状态进行识别.结果 表明:考虑单一时间尺度...  相似文献   

10.
受外界环境噪声以及振噪耦合的影响,滚动轴承早期故障信号特征微弱,对其实现智能故障诊断具有挑战性.为了解决上述问题,提出一种基于改进最大相关峭度解卷积(improved maximum correlation kurtosis deconvolution,IMCKD)和多通道卷积神经网络(multi-channel co...  相似文献   

11.
基于PSO改进深度置信网络的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
针对深度置信网络(Deep Belief Network,DBN)用于轴承故障诊断时,网络层结构调试比较费时等问题,提出一种基于粒子群优化(Particle Swarm Optimization,PSO)的DBN算法,以及基于该算法的轴承故障诊断模型。该模型利用PSO算法优选DBN网络结构,并通过自适应时刻估计法微调模型参数,随后运用具有最优结构的DBN模型直接从原始振动信号中提取低维故障特征,并将其输入到Soft-max分类器中识别轴承的故障模式。该算法与支持向量机、BP神经网络、DBN、堆叠降噪自编码等方法进行对比分析,实验结果表明,PSO改进的DBN算法具有更高的准确率以及更好的鲁棒性。  相似文献   

12.
针对滚动轴承的故障诊断,设计并实现了一种基于双向长短期记忆网络(BiLSTM)的诊断模型.将原始振动信号直接作为模型输入,自动提取滚动轴承故障特征,可以对内圈、滚动体、外圈不同故障类型及不同损伤程度的滚动轴承进行故障识别.该模型通过BiLSTM神经网络自动提取轴承振动信号的深层信息,弥补了传统故障诊断方法需要人工提取特...  相似文献   

13.
针对实际工程中滚动轴承多工况下传统故障诊断方法识别率偏低的情况.提出了一种基于AlexNet-Adaboost相结合的滚动轴承故障识别方法.以滚动轴承信号的时频图作为模型输入、分类结果作为模型输出,训练多个AlexNet基分类器;在此基础上利用Adaboost(自适应提升)算法进一步提升得到强分类器,将多工况下滚动轴承...  相似文献   

14.
仝钰  庞新宇  魏子涵 《振动与冲击》2021,(5):247-253,260
针对一维信号作为卷积神经网络输入时无法充分利用数据间的相关信息的问题,提出GADF-CNN的轴承故障诊断模型.利用格拉姆角差域(GADF)对采集到的振动信号进行编码,可以很容易地进行角度透视,从而识别出不同时间间隔内的时间相关性并生产相应特征图,之后将其输入卷积神经网络(CNN)自适应的完成滚动轴承故障特征的提取与分类...  相似文献   

15.
现实中滚动轴承的工况复杂易变,无法有效地对其进行故障诊断。对此,提出一种基于粒子群优化的细菌觅食(Particle Swarm Optimization and Bacterial Foraging Algorithm,PSO-BFA)和改进Alexnet(第二代卷积神经网络)的滚动轴承故障诊断方法。该方法将Alexnet的结构简化,并分别在其前两层池化层之后添置局部归一化层以降低训练成本;将以小批量样本softmax的交叉熵为损失函数,按Adam迭代优化法小样本、少迭代次数训练改进Alexnet后的变负荷样本诊断精度设计为适应度函数,并结合PSO中粒子移动速度的更新方法更新BFA中细菌的游动方向来寻找改进Alexnet的结构等相关参数;根据PSO-BFA所得的参数,以相同的训练方法大样本、多迭代次数训练改进Alexnet,实现复杂工况下滚动轴承多状态故障诊断。实验结果表明所提出的方法对复杂工况下滚动轴承16种故障状态的诊断是可行的,且有更高的诊断精度、更好的抗干扰和泛化性能。  相似文献   

16.
适应性动量(Adam)估计优化器易使深度长短时记忆神经网络(long short-term memory,LSTM)陷入局部极小值,导致故障诊断精度过低;鲸鱼算法(whale optimization algorithm,WOA)的寻优区域过大,导致寻优效率过低.针对上述两问题,将WOA进行改进(improved wh...  相似文献   

17.
基于遗传算法的滚动轴承复合故障诊断研究   总被引:1,自引:2,他引:1       下载免费PDF全文
建立了滚动轴承外圈与滚动体各有一点损伤的典型故障模型,在损伤模型振动分析的基础上,利用遗传算法的寻优功能,对故障的特征参数进行自动优化,最后利用逐次诊断理论,对变工况条件下的滚动轴承复合故障进行诊断。计算结果表明该方法对于滚动轴承的复合故障诊断非常有效。  相似文献   

18.
针对传统支持向量机(SVM)算法在滚动轴承故障诊断领域中,对失衡数据集效果不佳、对噪声敏感以及对本身参数依赖较大等缺点,提出一种基于样本特性的过采样算法(OABSC)。该算法利用改进凝聚层次聚类将故障样本分成多个簇;在每个簇中综合考虑样本距离、近邻域密度对"疑似噪声点"进行识别、剔除,并将剩余样本按信息量进行排序;紧接着,在每个簇中采用K^*-信息量近邻域(K^*INN)过采样算法合成新样本,以使得数据集平衡;模拟3种不同失衡比下的轴承故障情况,并采用粒子群算法优化了SVM分类器的参数。经试验证明:相比已有算法,OABSC算法能更好地适用于数据呈多簇分布且失衡的轴承故障诊断领域,拥有更高的G-mean值与AUC值以及更强的算法鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号