首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用化学气相沉积(CVD)法研制了一种钨基硼掺杂金刚石(W/BDD)薄膜电极,通过扫描电镜和Raman光谱考察了W/BDD薄膜电极的性能,通过电化学方法测定了其在LiCl-KCl熔盐中的电化学窗口和电化学性能。结果表明,研制的W/BDD薄膜电极的BDD薄膜有较好的微观结构;W/BDD薄膜电极在LiCl-KCl熔盐中的电化学窗口约为3.5 V(-2.5~1.0 V,相对于Ag/AgCl参比极电位);电解过程中,氧离子不与W/BDD薄膜电极表面BDD薄膜层的碳反应,直接被氧化为氧原子;长时间电解不会改变电极表面薄膜层的形貌和结构。  相似文献   

2.
<正>利用化学气相沉积法(CVD)研制了一种钨基硼掺杂金刚石(W/BDD)薄膜电极,通过扫描电镜(SEM)和拉曼(Raman)光谱考察了钨基硼掺杂金刚石薄膜电极的性质(图1、2),利用循环伏安法和方波伏安法测定了其在LiCl-KCl熔盐中的电化学窗口和电化学性能,并长时间进行了考验。结果表明,研制的W/BDD薄膜电极表面的硼掺杂金刚石膜表面的金刚石颗粒生长致密,且连续分布,晶粒的尺寸在μm级。电极表面薄膜主要以金  相似文献   

3.
研究了LiF加入LiCl-KCl熔盐对钆电化学及络合行为的影响,发现LiF加入LiCl-KCl熔盐后,钆、铽的还原电位差由原来的6mV变为67mV。利用电化学方法和光谱方法研究了熔盐中钆离子和铽离子的配位结构,发现LiCl-KCl-GdCl_3(5mol%)/TbCl_3(5mol%)熔盐中存在[GdCl_6]~(3-)、[TbCl_6]~(3-)的正八面体结构;考察了LiF加入LiCl-KCl熔盐对钆、铽离子结构的影响,在LiCl-KCl-GdCl_3/TbCl_3中加入LiF后,钆离子和铽离子配位结构均为络合了3个F~-和3个Cl~-的八面体结构[GdF_3Cl_3]~(3-)和[TbF_3Cl_3]~(3-),计算得到两种八面体结构的相对累积稳定常数分别为10.98和6.38。以此为理论基础,进行了LiF对LiCl-KCl熔盐中钆电解精炼的影响研究,发现将LiF加入LiCl-KCl熔盐后进行钆电解精炼时,能以更高的去污系数分离钆。  相似文献   

4.
利用液态金属作为阴极分离、提取稀土元素有很多优点。以液态金属Zn为阴极,研究Pr(Ⅲ)离子在液态Zn阴极上还原的电化学机理。在LiCl-KCl-PrCl_(3)熔盐中,分别采用循环伏安法、半积分法研究W电极和液态Zn电极上Pr(Ⅲ)的电化学还原过程。结果表明,在该实验温度下,只有一种富锌的Pr_(x)Zn_(y)金属间化合物生成。通过循环伏安法和半微分法计算了LiCl-KCl熔盐中Pr(Ⅲ)的扩散系数。根据电化学机理研究,采用液态金属Zn为阴极恒电位电解提取稀土Pr。电感耦合等离子体发射光谱仪(ICP)结果表明,随着电解时间的增长,熔盐中Pr(Ⅲ)离子的浓度逐渐降低。电解2 h后,提取效率为45.38%,当电解时间达到40 h时,提取效率为99.48%。X射线衍射(XRD)和扫描电镜-能谱(SEM-EDS)点分析结果表明,恒电位电解2 h得到的沉积物为Zn_(11)Pr_(3)。  相似文献   

5.
对比了Ce(Ⅲ)在LiCl-KCl、NaCl-KCl和KCl熔盐体系中Mo电极上的电化学行为。结果表明:高温NaCl-KCl、KCl熔盐体系中由于Ce(Ⅲ)与Na(Ⅰ)和K(Ⅰ)的还原电位相近,会发生大量基体盐元素的还原,而低温LiCl-KCl熔盐体系中Ce(Ⅲ)未发生上述现象;LiCl-KCl熔盐体系中Ce(Ⅲ)的还原反应为一步三电子转移的可逆过程,采用循环伏安法和计时电位法计算得到扩散系数与温度的关系式分别为ln D=-4 341.5/T-7.97和ln D=-4 346.6/T-7.39;表观还原电位与温度的关系式为E?,*(Ce(Ⅲ)/Ce)=0.000 72T-3.650。  相似文献   

6.
<正>Tungsten substrate boron-doped diamond(W/BDD) film electrode was developed by chemical vapor deposition (CVD).The property of W/BDD film electrode was investigated by SEM and Raman (Fig.1-2).The electrochemical windows and electrochemical property of W/BDD film electrode were measured in LiCl-KCl molten salt by cyclic voltammograms and squre sawe voltammograms.The results show that the developed W/BDD film electrode continuous,even,  相似文献   

7.
氯化锂-氯化钾共晶熔盐是电解精炼干法后处理中最常用的电解质,其含有的杂质直接影响电流效率和产物纯度。本研究分别采用高温处理、HCl气体鼓泡和恒电位电解等方法依次去除了熔盐中的易挥发物质、氧离子和金属离子等杂质,获得了较高纯度的熔盐。采用热重分析(TGA)、电化学和电感耦合等离子体原子发射光谱(ICP-AES)等方法对比了纯化前后熔盐中各杂质的含量。研究结果表明:去除易挥发杂质的最佳处理温度范围为450~650℃;去除杂质金属离子时最佳电解电位为-2.3Vvs.Ag/AgCl(摩尔分数2%),恒电位电解800s后杂质金属离子总量低于1.5×10-6 g/g(盐)。以上研究结果表明,采用高温处理、HCl气体鼓入和恒电位电解可获得纯度较高的LiCl-KCl共晶熔盐。  相似文献   

8.
正电解精炼已成为干法后处理的首选技术路线,因此研究离子在熔盐中的电化学行为对干法后处理尤为重要。本工作测定了LiF加入LiCl-KCl熔盐前后对钆、铽还原电位的影响,发现加入LiF后钆、铽的还原电位差由原来的6mV变为67mV,增大了11倍多。用电化学和光谱的方法得到了熔盐中离子的配位结构,发现在LiCl-KCl-GdCl_3(5mol%)/TbCl_3(5mol%)熔盐中为[GdCl_6]~(3-)、[TbCl_6]~(3-)的正八面体结构,其拉曼图谱如图1所  相似文献   

9.
为支持乏燃料熔盐电解精炼设备的放大设计与优化,基于Maxwell原理和电化学理论,采用Comsol Multiphysics有限元方法,研究建立了10 kg/批次金属乏燃料熔盐电解精炼设备纯电场和电化学场数值模型,并对国外相对成熟的方形电解槽和圆台形电解槽进行了数值仿真分析和比较,包括电解槽结构、电极间距、阴极形状等因素对电解槽电场和电化学性能的影响。结果表明,方形电解槽的电流效率等经济性能较优,圆台形电解槽的反应电流密度等电化学性能较优;方形电解槽中,平板阴极的电流效率等经济性能和电化学性能均优于棒状阴极;电极间距在10~40 mm的研究范围内,两种电解槽的反应电流密度等电化学性能随电极间距的增大变化均不明显,但电解槽的电流效率等经济性能和热稳定性显著减弱。模拟结果与文献实验结果吻合良好,所建模型预期可较好反映熔盐电解精炼过程。  相似文献   

10.
采用循环伏安法(CV)、方波伏安法(SWV)和开路计时电位法(OCP)等方法研究了LiCl-KCl熔盐中SmCl_(3)、GaCl_(3)和SmCl_(3)-GaCl_(3)在Mo阴极上的电化学行为。SmCl_(3)在Mo阴极上的电化学研究结果表明,Sm^(3+)在LiCl-KCl熔盐体系中发生单电子转移反应,仅能还原为Sm^(2+);并计算了不同温度下Sm^(3+)的扩散系数和Sm^(3+)/Sm^(2+)电对的表观标准电位。SmCl_(3)与GaCl_(3)共沉积电化学分析结果表明,Sm^(3+)还原为Sm^(2+)后,可与Ga形成SmGa_(x)合金化合物。X射线衍射和扫描电子显微镜与能谱分析(SEM-EDS)表明-1.600 V恒电位电解LiCl-KCl-SmCl_(3)-GaCl_(3)可得到SmGa_(2)合金。以上研究表明,加入GaCl_(3)可从LiCl-KCl-SmCl_(3)熔盐体系中有效提取Sm。  相似文献   

11.
钍的分离和再利用是熔盐堆钍铀燃料循环的重要组成部分,钍与裂变产物特别是化学性质相似的镧系元素的分离是熔盐堆氟盐燃料处理的关键之一。利用循环伏安法和方波伏安法研究了773 K下多种镧系元素氟化物(w=3%)在LnF_3-LiCl-KCl熔盐中的电化学行为。研究结果表明:Ce~(3+)和Gd~(3+)在惰性电极上均一步还原为金属,Nd~(3+)则是通过两步反应还原为金属,而Sm~(3+)和Eu~(3+)只能还原为低价态的Sm~(2+)和Eu~(2+);Th和Ln在惰性金属阴极上的析出电位差ΔE均大于0.19 V,在LiCl-KCl熔盐体系中实现Th与Ln的电化学分离在理论上是可行的;与纯氯盐体系相比,少量F-的引入不会改变Ln~(3+)在惰性电极上的电极反应过程,F-的存在使得Ln~(3+)在LiCl-KCl熔盐中的活度降低,从而导致扩散系数减小。此研究结果为了解Th4+)和Ln~(3+)在含F-氯盐体系中的电化学行为和建立可行的分离方法提供了基础实验依据。  相似文献   

12.
为优化熔盐电解还原制备金属铈的工艺条件,开展了NaCl-KCl熔盐体系中CeCl3的电化学行为及电解工艺研究。结果表明,在830 ℃下,以钼棒为工作电极、石墨棒为对电极、阴极电位高于1.9 V(Ag/AgCl为参比电极,下同)时,Ce3+可快速电解,提高Ce3+浓度有利于反应的进行。槽电压为4.41 V、相应的阴极电位为2.27 V时,电流效率最佳。固定阳极面积改变阴极面积的研究结果显示,随着阴极面积的减小,槽电压逐渐升高。实验条件下,槽电压随电极中心距的变化是线性的,与电极中心距的改变相比,电流的变化对槽电压的影响更显著。  相似文献   

13.
采用NH4Cl和HCl气体进行LiCl-KCl共晶熔盐中氧离子的去除。在使用NH4Cl和HCl气体去除LiCl-KCl共晶熔盐中的氧离子过程中,用钇稳定氧化锆测氧电极对熔盐中的氧离子浓度变化进行测定。结果表明,HCl与熔盐中氧离子反应生成H2O,并将反应产物水通过HCl载带出去。NH4Cl去除氧离子的过程也是通过NH4Cl分解的HCl与氧离子反应除去熔盐中氧离子。NH4Cl和HCl均能有效地去除LiCl-KCl熔盐中的氧离子,使氧离子浓度降低至10-5~10-4 mol/kg。  相似文献   

14.
采用NH4Cl和HCl气体进行LiCl-KCl共晶熔盐中氧离子的去除。在使用NH4Cl和HCl气体去除LiCl-KCl共晶熔盐中的氧离子过程中,用钇稳定氧化锆测氧电极对熔盐中的氧离子浓度变化进行测定。结果表明,HCl与熔盐中氧离子反应生成H2O,并将反应产物水通过HCl载带出去。NH4Cl去除氧离子的过程也是通过NH4Cl分解的HCl与氧离子反应除去熔盐中氧离子。NH4Cl和HCl均能有效地去除LiCl-KCl熔盐中的氧离子,使氧离子浓度降低至10-5~10-4 mol/kg。  相似文献   

15.
以莫来石为隔膜材料,制备了用于高温氯化物(LiCl-KCl)熔盐体系的封闭式Ag/AgCl参比电极。采用LCR法分别测定了参比电极隔膜的电阻。同时,系统研究了参比电极的稳定性和重复使用性及平行性,重点研究了AgCl浓度对参比电极稳定性的影响。表征结果表明隔膜的组成为3Al2O3•2SiO2,具有良好的离子导通性。电化学研究结果表明,AgCl摩尔分数为2.0%时,参比电极可连续稳定使用40 h以上,电位差稳定在±2 mV以内;重复使用4次后(约100 h),电位变化±5 mV;±5 mA的极化电流5 s后可于15 s内恢复初始开路电位。上述研究结果表明,莫来石隔膜Ag/AgCl具有良好的稳定性、重复使用性、可逆性,可用于熔盐电化学研究及电解工艺中电极电位的控制中。  相似文献   

16.
正熔盐电解精炼干法后处理技术受到越来越多核能国家的关注,以较高的去污系数从乏燃料中回收铀钚已成为研究热点。根据之前的研究发现,LiF加入LiCl-KCl熔盐前后对钆、铽的还原电位有影响,以此为理论基础,进行了LiF加入LiCl-KCl熔盐前后对钆、铽电解精炼的影响。图1为LiF加入前后的电解曲线,加入LiF后进行钆、铽电解精炼时两种熔盐体系所得到的阴极产物示于图2。表1列出不同金属样品中的元素含  相似文献   

17.
主要研究了723~813 K下LiCl-KCl-LaCl_(3)熔盐体系中La^(3+)在惰性W电极上的电化学行为。在惰性W电极上La^(3+)约在-2.04 V(vs.Ag/AgCl)被还原,该反应是一步三电子转移的过程。在LiCl-KCl-LaCl_(3)熔盐体系中利用开路计时电位计算La^(3+)/La在W电极上的氧化还原电位、形成LaCl_(3)吉布斯自由能以及La^(3+)活度系数。采用电位滴定法研究LaCl_(3)与氧化物离子的反应,滴定曲线表明氧化物的沉淀为LaOCl。根据实验得到的表观电极电位、活度系数和相关的热力学数据,绘制了La-O稳定性相图。E-pO^(2-)稳定相图显示La^(3+)在723 K和较高O^(2-)的浓度范围内稳定存在的化合物为LaOCl。  相似文献   

18.
研究了高ThF4浓度下的CeF3-ThF4-LiCl-KCl熔盐中Th的电化学沉积行为.ThF4的质量分数从3%增加为10%时,Th(Ⅳ)的初始还原电位略微正移(从-1.75 V正移至-1.72 V,vs.Ag/AgCl).熔盐中Th(Ⅳ)浓度的增大会导致其初始还原电位正移,而F浓度的增大则导致其负移.电解沉积时,10...  相似文献   

19.
在LiCl-KCl共晶盐中,研究了在不同温度下La^(3+)的反应动力学机理。首先,在723~873 K范围内,利用循环伏安法(CV)测得La^(3+)的扩散系数D为3.06×10^(-5)~6.08×10^(-5)cm^(2)/s,并根据Arrhenius方程计算了La^(3+)在电解质中的扩散活化能E_(D)=34.51 kJ/mol。随后,利用电化学阻抗谱技术(EIS)研究了La^(3+)在电极上的动力学参数并测得交换电流密度i_(0)为0.48~1.39 A/cm^(2)、反应速率常数k_(0)=2.04×10^(-4)~5.90×10^(-4)cm/s及反应活化能E_(a)=35.04 kJ/mol。通过Nyquist图和拟合的等效电路图研究La^(3+)在W电极上的反应动力学机理,发现在LiCl-KCl共晶盐中La^(3+)的电化学反应速率不仅受扩散控制还受电荷转移控制,且与温度成正相关。  相似文献   

20.
通过循环伏安法、方波伏安法和计时电位法等研究了LiCl-KCl共晶熔盐中ZrCl_4于Mo电极上的电化学行为。探究Zr(Ⅳ)于Mo阴极的还原机理,并计算Zr(Ⅱ)的扩散系数及Zr(Ⅱ)/Zr(0)的表观标准电势。结果表明:Zr(Ⅳ)在Mo阴极还原机理为:Zr(Ⅳ)+2e=Zr(Ⅱ);Zr(Ⅱ)+2e=Zr(0)或Zr(Ⅱ)+e+Cl~-=ZrCl;ZrCl+e=Zr(0)+Cl~-;金属Zr在阳极的氧化过程为:Zr(0)-2e=Zr(Ⅱ)和Zr(Ⅱ)-2e=Zr(Ⅳ)。Zr(Ⅳ)还原为Zr(Ⅱ)和Zr(Ⅱ)还原为Zr(0)均为可逆反应,且还原过程均为扩散控制。LiCl-KCl熔盐中Zr(Ⅱ)于Mo阴极上的扩散系数与温度的关系为:ln D=-6 724/T-2.95,扩散的活化能Ea=55.9kJ/mol。Zr(Ⅱ)/Zr(0)的表观标准电位与温度的关系为:E_(Zr(Ⅱ)/Zr(0))~(Θ*)=-2.695+9.33×10~(-4) T。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号