首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu T  Chen ZL  Yu WZ  You SJ 《Water research》2011,45(5):2111-2121
This study focuses on organic membrane foulants in a submerged membrane bioreactor (MBR) process with pre-ozonation compared to an individual MBR using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. While the influent was continuously ozonated at a normal dosage, preferable organic matter removal was achieved in subsequent MBR, and trans-membrane pressure increased at a much lower rate than that of the individual MBR. EEM fluorescence spectroscopy was employed to characterize the dissolved organic matter (DOM) samples, extracellular polymeric substance (EPS) samples and membrane foulants. Four main peaks could be identified from the EEM fluorescence spectra of the DOM samples in both MBRs. Two peaks were associated with the protein-like fluorophores, and the other ones were related to the humic-like fluorophores. The results indicated that pre-ozonation decreased fluorescence intensities of all peaks in the EEM spectra of influent DOM especially for protein-like substances and caused red shifts of all fluorescence peaks to different extents. The peak intensities of the protein-like substances represented by Peak T1 and T2 in EPS spectra were obviously decreased as a result of pre-ozonation. Both external and internal fouling could be effectively mitigated by the pre-ozonation. The most primary component of external foulants was humic acid-like substance (Peak C) in the MBR with pre-ozonation and protein-like substance (Peak T1) in the individual MBR, respectively. The content decrease of protein-like substances and structural change of humic-like substances were observed in external foulants from EEM fluorescence spectra due to pre-ozonation. However, it could be seen that ozonation resulted in significant reduction of intensities but little location shift of all peaks in EEM fluorescence spectra of internal foulants.  相似文献   

2.
A pilot-scale submerged membrane bioreactor (MBR) for real municipal wastewater treatment was operated for over one year in order to investigate extracellular polymeric substances (EPS) properties and their role in membrane fouling. The components and properties of bound EPS were examined by the evaluation of mean oxidation state (MOS) of organic carbons, Fourier transform infrared (FT-IR) spectroscopy, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy, and gel filtration chromatography (GFC), etc. Test results showed that MOS of organic carbons in the bound EPS was ranging from −0.14 to −0.51, and major components could be assessed as proteins and carbohydrates. FT-IR analysis confirmed the presence of proteins and carbohydrates in the bound EPS. The organic substances with fluorescence characteristics in the bound EPS were identified as proteins, visible humic acid-like substances and fulvic acid-like substances by EEM technology. GFC analysis demonstrated that EPS had part of higher MW molecules and a broader MW distribution than the influent wastewater. It was also found that a high shear stress imposed on mixed liquor could result in the release of EPS, which would in turn influence membrane fouling in MBRs. Bound EPS solution was observed to have a stronger potential of fouling than mixed liquor. During long-term operation of the MBR, bound EPS demonstrated positive correlations with membrane fouling while temperature was verified as a negative factor affecting EPS concentration. Compared to tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS) showed more significant correlations with membrane fouling. This critical investigation would contribute towards a better understanding of the behavior, composition and fouling potential of EPS in MBR operation.  相似文献   

3.
Sheng GP  Yu HQ 《Water research》2006,40(6):1233-1239
In this study three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was applied to characterize the extracellular polymeric substances (EPS) extracted from aerobic and anaerobic sludge in wastewater treatment. Three fluorescence peaks were identified in EEM fluorescence spectra of the EPS samples. Two peaks were attributed to the protein-like fluorophores, and the third to the humic-like fluorophores. The effects of both pH and EPS concentration were significant on EEM fluorescence spectra of EPS, but the ionic strength had no substantial effect on EEM spectra of the EPS. The differences in the EPS fluorescence parameters, e.g., peak locations, intensities and ratios of various peak intensities, indicate the difference in the chemical structures of the EPS from various origins. EEM spectroscopy was proven to be an appropriate and effective method to characterize the EPS from various origins in wastewater treatment systems.  相似文献   

4.
A membrane bioreactor (MBR) is a promising wastewater treatment technology, but there is a need for efficient control of membrane fouling, which increases operational and maintenance costs. Soluble microbial products (SMP) have been reported to act as major foulants in the operation of MBRs used for wastewater treatment. In this study, SMP in MBRs operated with different sludge retention times (SRTs) were investigated by means of various analytical techniques and their relations to the evolution of membrane fouling were considered. Bench-scale filtration experiments were carried out in a laboratory with synthetic wastewater to eliminate fluctuations that would occur with the use of real wastewater and that would lead to fluctuations in compositions of SMP. Three identical submerged MBRs were operated for about 50 days under the same conditions except for SRT (17, 51 and 102 days). Accumulation of SMP in the MBRs estimated by conventional analytical methods (i.e., the phenol-sulfuric acid method and the Lowry method) was significant in the cases of short SRTs. However, the degrees of membrane fouling in the MBRs were not directly related to the concentrations of SMP in the reactors estimated by the conventional analytical methods. Non-conventional analytical methods such as excitation-emission matrix (EEM) fluorescence spectroscopy revealed that characteristics of SMP in the three reactors considerably differed depending on SRT. Foulants were extracted from the fouled membranes at the end of the operation and were compared with SMP in each MBR. It was clearly shown that characteristics of the foulants were different depending on SRT, and similarities between SMP and the extracted foulants were recognized in each MBR on the basis of results of EEM measurements. However, such similarities were not found on the basis of results obtained by using the conventional methods for analysis of SMP. The results of this study suggest that the use of conventional methods for analysis of SMP is not appropriate for investigation of membrane fouling in MBRs.  相似文献   

5.
The documented presence of pharmaceuticals and personal care products (PPCPs) in water sources has prompted a global interest in understanding their environmental fate. Dissolved organic matter (DOM) can potentially alter the fate of these contaminants in aqueous systems by forming contaminant-DOM complexes. In-situ measurements were made to assess the interactions between three common PPCP contaminants and two distinct DOM sources: a wastewater treatment plant (WWOM) and the Suwannee River, GA (SROM). Aqueous DOM solutions (8.0 mg L−1 C, pH 7.4) were spiked with a range of concentrations of bisphenol-A, carbamazepine and ibuprofen to assess the DOM fluorophores quenched by PPCP interaction in excitation-emission matrices (EEM). Interaction effects on target analyte (PPCP) concentrations were also quantified using direct aqueous injection ultra high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). At low bisphenol-A concentration, WWOM fluorescence was quenched in an EEM region attributed to microbial byproduct-like and humic acid-like DOM components, whereas carbamazepine and ibuprofen quenched fulvic acid-like fluorophores. Fluorescence quenching of SROM by bisphenol-A and carbamazepine was centered on humic acid-like components, whereas ibuprofen quenched the fulvic acid-like fluorophores. Nearly complete LC-MS/MS recovery of all three contaminants was obtained, irrespective of analyte structure and DOM source, indicating relatively weak PPCP-DOM bonding interactions. The results suggest that presence of DOM at environmentally-relevant concentration can give rise to PPCP interactions that could potentially affect their environmental transport, but these DOM-contaminant interactions do not suppress the accurate assessment of target analyte concentrations by aqueous injection LC-MS/MSMS.  相似文献   

6.
Her N  Amy G  McKnight D  Sohn J  Yoon Y 《Water research》2003,37(17):4295-4303
To investigate the composition of dissolved organic matter (DOM) as a function of apparent molecular weight (MW) by rapid analytical methods, high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) was conducted with sequential on-line detectors consisting of UV, fluorescence, and quantitative DOC measurement. Fluorescence excitation-emission matrix (EEM) spectrophotometry was used to select wavelengths for the HPSEC on-line fluorescence system. The chosen peak maxima locations of excitation-emission wavelengths were 278-353 nm for protein-like substances and 337-423 nm for fulvic-like substances based on an analysis of EEM spectra for various samples and reference materials. This system provides quantitative and qualitative information on the specific MW components of DOM, including proportion of DOC (by DOC measurement), aromaticity (by comparison of UV and DOC measurements), and chemical properties (by fluorescence measurement). It further allows determination of organic matter characteristics (e.g., fulvic-like, protein-like, and polysaccharide-like substances) as a function of MW. Three types of samples (Irvine Ranch ground water (IRWD-GW), Barr Lake surface water (BL-SW), and Hawaii wastewater secondary effluent) were analyzed by the HPSEC-UVA-fluorescence-DOC system. These results were compared with fluorescence EEM for samples fractionated by HPLC-SEC. The DOM fraction in the high apparent MW range (over 10,000g/mol) consisted of polysaccharide-like substances for IRWD-GW and a mixture of polysaccharide-like/protein-like substances for BL-SW and wastewater secondary effluent. Minimal amounts of fulvic-like substances were found in the wastewater secondary effluent sample. The DOM fractions in a medium apparent MW range (5000-1000 g/M) showed higher aromaticity (fulvic in character) than any other fractions for all samples. For the DOM fraction in the low apparent MW range (below 680 g/M), additional aliphatic organic matter was found in IRWD-GW, while BL-SW contained protein-like processes. DOM plays an important role in drinking water and wastewater treatment processes. An enhanced HPSEC technique with multiple on-line detectors enables a better understanding of quantitative and qualitative DOM properties and can help to design and optimize water/wastewater treatment facilities.  相似文献   

7.
Li WH  Sheng GP  Liu XW  Yu HQ 《Water research》2008,42(12):3173-3181
Three-dimensional excitation-emission-matrix (EEM) fluorescence spectrometry was used to characterize the extracellular and intracellular substances of activated sludge in a sequencing batch reactor (SBR). Parallel factor analysis (PARAFAC) was applied to extract the pure spectra from the overlapped spectra. Three main components, proteins, fulvic- and humic-like substances, were identified from the extracellular substances. Their fluorescence peaks were at an excitation/emission (Ex/Em) of 280/350, 340/400 and 390/450 nm, respectively. The fluorescence of the extracellular proteins had a similar changing pattern with the wastewater chemical oxygen demand, the fulvic-like substance did not vary significantly in a cycle and the humic-like substances accumulated in the substrate uptake phase but decreased later. Proteins and nicotinamide adenine dinucleotide, reduced form (NADH), were identified as the two main intracellular fluorophores, and their fluorescence peaks (Ex/Em) were at 280/340 and 350/450 nm, respectively. The fluorescence intensity scores of the intracellular fluorophores were closely related to the bioreactor performance. Thus, the results of this work provide a foundation for potential utilization of the EEM fluorescence spectroscopy to monitor the activated sludge systems for wastewater treatment.  相似文献   

8.
With the increased use of membranes in drinking water treatment, fouling - particularly the hydraulically irreversible type - remains the main operating issue that hinders performance and increases operational costs. The main challenge in assessing fouling potential of feed water is to accurately detect and quantify feed water constituents responsible for membrane fouling. Utilizing fluorescence excitation-emission matrices (EEM), protein-like substances, humic and fulvic acids, and particulate/colloidal matter can be detected with high sensitivity in surface waters. The application of principal component analysis to fluorescence EEMs allowed estimation of the impact of surface water constituents on reversible and irreversible membrane fouling. This technique was applied to experimental data from a two year bench-scale study that included thirteen experiments investigating the fouling potential of Grand River water (Ontario, Canada) and the effect of biofiltration pre-treatment on the level of foulants during ultrafiltration (UF). Results showed that, although the content of protein-like substances in this membrane feed water (= biofiltered natural water) was much lower than commonly found in wastewater applications, the content of protein-like substances was still highly correlated with irreversible fouling of the UF membrane. In addition, there is evidence that protein-like substances and particulate/colloidal matter formed a combined fouling layer, which contributed to both reversible and irreversible fouling. It is suggested that fouling transitions from a reversible to an irreversible regime depending on feed composition and operating time. Direct biofiltration without prior coagulant addition reduced the protein-like content of the membrane feed water which in turn reduced the irreversible fouling potential for UF membranes. Biofilters also decreased reversible fouling, and for both types of fouling higher biofilter contact times were beneficial.  相似文献   

9.
Bing-Jie Ni 《Water research》2009,43(5):1350-223
In this work the extracellular polymeric substances (EPS) produced by mixed microbial community in activated sludge are characterized using gel-permeating chromatography (GPC), 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy measurement and mathematical modeling. Chromatograms of extracted EPS exhibit seven peaks, among which proteins have four peaks and polysaccharides have three peaks. Evolution of the chromatogram area indicates that the quantity of produced EPS increases significantly in the substrate utilization process. With the parallel factor analysis (PARAFAC) approach, two components of the polymer matrix are identified by the EEM analysis, one as EPS proteins at Ex/Em 280/340 nm and one matrix associated as fulvic-acid-like substances at 320/400 nm. The proteins and fulvic-acid-like substances in the EPS increase in the substrate utilization phase, but decrease in the endogenous phase. To have a better insight into EPS production, the kinetic modeling of EPS is performed with regard to their molecular weight distribution and chemical natures identified by GPC and EEM. In this way, the dynamics of these important microbial products are better understood.  相似文献   

10.
农家乐污水中溶解性有机质的三维荧光特性研究   总被引:2,自引:1,他引:1  
采用三维荧光光谱(3DEEM)技术考察了农家乐污水中溶解性有机质的三维荧光特性.结果表明,农家乐污水中的有机污染物荧光峰以类蛋白质荧光峰为主,其中高激发波长类色氨酸荧光峰Peak T最强,其次是低激发波长类色氨酸荧光峰Peak S和低激发波长类酪氨酸荧光峰Peak D;综合性农家乐污水的Peak S和Peak D荧光强度比以餐饮为主的农家乐污水的要强.农家乐污水经受纳水体稀释和净化后,类蛋白质荧光强度仍远高于地表水的.其对受纳水体的污染不容忽视.  相似文献   

11.
From analysis of spectrophotometric properties of dissolved organic matter (OM) and the hydrochemical responses of some karst springs under different hydrologic conditions, an assessment of the origin and transfer pathway of OM present in karst spring waters, from soil and epikarst toward the spring, has been conducted for three karst aquifers in southern Spain: Alta Cadena, Sierra de Enmedio and Los Tajos. Intrinsic fluorescence (excitation-emission matrices or EEMs), together with major water chemistry (electrical conductivity, temperature, alkalinity, Cl, Mg+ 2) and PCO2 along with natural hydrochemical tracers (TOC and NO3), have been monitored in 19 springs which drain the three karst aquifers examined in this study. The spring water EEM spectra indicate that fulvic acid-like substances, produced in the soil as a consequence of the decomposition of OM, are the dominant fluorophores, although some of the OM appears to originate from in situ microbiological activity but could be indicative of contamination present in recharge waters from livestock. During each recharge event, TOC and NO3 concentrations increased and variations in fluorescence intensities of peaks attributed to fulvic acid-like compounds were observed. In areas with minimal soil development, spatial and temporal variations in the fluorescence intensity of fulvic acid-like substances and other fluorophores derived from microbiological activity, together with other hydrochemical parameters, provide insights into the hydrogeological functioning of karst aquifers and the infiltration velocity of water from soil and facilitate assessment of contamination vulnerability in these aquifers.  相似文献   

12.
We have combined a turbulent jet flow ozone contactor (TJC) with a membrane bioreactor (MBR) to establish a zero-discharge system in terms of excess sludge in the MBR. The TJC-MBR system was compared with the conventional MBR (Control-MBR) with respect to i) the size and zeta potential of the sludge particles, ii) the loosely bound extra-cellular polymeric substances (EPSs) and tightly bound EPS of the microbial flocs, iii) the porosity and biovolume of the bio-cake accumulated on the membrane, and iv) the membrane permeability. The TJC system generated the ozonated sludge with a negligible amount of loosely bound EPS and a positive zeta potential. As a result, when such ozonated sludge was recycled, the average size of the sludge particles (e.g., microbial flocs) increased in the TJC-MBR. Consequently the bio-cake formed in the TJC-MBR had greater porosity than that in the Control-MBR, giving rise to higher membrane permeability in the TJC-MBR.  相似文献   

13.
Yun MA  Yeon KM  Park JS  Lee CH  Chun J  Lim DJ 《Water research》2006,40(1):45-52
Two membrane bioreactors were operated at aerobic (DO=6.0mg/L) and anoxic (DO<0.3mg/L) conditions for the treatment of synthetic dye wastewater to determine the effect of dissolved oxygen on membrane filterability. The rate of membrane fouling for the anoxic MBR was five times faster than that for the aerobic MBR. Differences in the nature of the biofilm that was formed on the membrane surface as the result of different DO level was the main factor in the different fouling rates. The biofilm structure was characterized using digital image analysis techniques. Biofilm images were obtained using confocal laser scanning microscopy (CLSM) at various operation points. Structural parameters were then computed from these images using an image analysis software (ISA-2). The structural parameters indicated that the anoxic biofilm was thinner than the aerobic biofilm but the anoxic biofilm was spread out on the membrane surface more uniformly and densely, resulting in the higher membrane fouling. Based on the extracellular polymeric substances (EPS) visualization and quantification, it was also found that EPS, key membrane foulants were spread out more uniformly in the anoxic biofilm in spite of lower amount of EPS compared to that in the aerobic biofilm.  相似文献   

14.
The initial fouling characteristics of aerobic submerged membrane bioreactors (MBRs) were analysed under different flux conditions. Physico-chemical analyses of the mixed liquor hinted that carbohydrates were more important to membrane fouling than proteins. However, this contrasted with the characterisation of foulants on the membrane surfaces. Micro-structural analyses of the foulants on the membrane surfaces showed that the dominant foulants were different under different flux conditions. Membrane fouling occurred through a biofilm-dominated process under lower flux conditions, but the mechanism shifted towards a non-biofilm, organic fouling process as the flux was increased. In spite of the differences in fouling mechanisms, it was found that the protein fraction on the membrane surfaces, in the initial stages of MBR operations, had the greatest impact in the rise of transmembrane pressure.  相似文献   

15.
To reveal primary biofoulant in soluble microbial products (SMP) and/or soluble extracellular polymeric substances (EPS), after removal of sludge particles, activated sludge samples were subjected to microfiltration tests in a submerged MBR. Filtration resistance directly correlates with the saccharide concentration. Saccharides in wastewater from several sources contained uronic acids, which increased the filtration resistance. When the microfiltration test liquids contained saccharides over 80 mg l−1, a gelatinous mass remained on the membrane surface after filtration and contained concentrations of saccharides and uronic acids 50 times higher than the original test liquid while only trace amounts of these substances were contained in the filtrate. The gelatinous mass contained high molecular weight substances of 106-108 Da, suggesting the presence of polysaccharides. However, molecules of this size were calculated to be much smaller than the pore size of the membrane. Ethylenediaminetetraacetic acid decreased filtration resistance, suggesting that polysaccharides containing uronic acid units could undergo intermolecular or intramolecular ionic cross-linking by polyvalent cations and form the gel, thus clogging the membrane pores as an actual biofoulant.  相似文献   

16.
Wu J  Zhang H  He PJ  Shao LM 《Water research》2011,45(4):1711-1719
Dissolved organic matter (DOM) plays an important role in heavy metal migration from municipal solid waste (MSW) to aquatic environments via the leachate pathway. In this study, fluorescence excitation-emission matrix (EEM) quenching combined with parallel factor (PARAFAC) analysis was adopted to characterize the binding properties of four heavy metals (Cu, Pb, Zn and Cd) and DOM in MSW leachate. Nine leachate samples were collected from various stages of MSW management, including collection, transportation, incineration, landfill and subsequent leachate treatment. Three humic-like components and one protein-like component were identified in the MSW-derived DOM by PARAFAC. Significant differences in quenching effects were observed between components and metal ions, and a relatively consistent trend in metal quenching curves was observed among various leachate samples. Among the four heavy metals, Cu(II) titration led to fluorescence quenching of all four PARAFAC-derived components. Additionally, strong quenching effects were only observed in protein-like and fulvic acid (FA)-like components with the addition of Pb(II), which suggested that these fractions are mainly responsible for Pb(II) binding in MSW-derived DOM. Moreover, the significant quenching effects of the FA-like component by the four heavy metals revealed that the FA-like fraction in MSW-derived DOM plays an important role in heavy metal speciation; therefore, it may be useful as an indicator to assess the potential ability of heavy metal binding and migration.  相似文献   

17.
This paper examines the sludge characteristics in a submerged membrane bioreactor (MBR) operated on a high strength wastewater from an alcohol distillery. Two membrane bioreactors, each with a 30 μm mesh filter, were investigated with and without addition of powdered activated carbon (PAC). Experiments were conducted with varying organic loading rates ranging from 3.4 to 6.9 kgCOD m−3 day−1 and the specific oxygen uptake rate (SOUR), sludge volume index (SVI), mixed liquor suspended solids (MLSS), particle size and extracellular polymeric substances (EPS) were monitored over a 180 day period. Respirometric experiments did not show enhancement in microbial activity with PAC supplementation. Addition of PAC decreased the SVI thereby perceptibly improving sludge dewaterability. The sludge particle size, which increased with time, appeared to be independent of PAC addition but was influenced by the aeration intensity. PAC also did not affect the sludge EPS concentration; however, the EPS composition, in terms of protein/carbohydrate (polysaccharide) ratio was altered resulting in a high P/C ratio. FTIR analysis of the sludge samples indicated that the functional groups associated with the sludge polysaccharides appear to be involved in its interaction with PAC.  相似文献   

18.
In this study, for the first time a full-scale membrane bioreactor (MBR) was investigated with focus on organic compounds in activated sludge over a period of approximately 2 years. Soluble extracellular polymeric substances (EPS) in the sludge supernatant and permeate as well as bound EPS extracted from fouled membranes were determined photospectrometrically and revealed a typical composition of three main components in the order metals>humic acids>carbohydrates>proteins. Results showed an important influence on membrane fouling by soluble humic substances and carbohydrates in complexes with metal cations. It was found that Fe(2+) and Fe(3+) play a decisive role in natural organic matter (NOM) complexation and subsequent membrane blockage. The determination of molar mass distribution in supernatant and permeate by size exclusion chromatography (SEC) revealed a significant retention of macromolecular compounds by the porous membranes in the range of 10-50%.  相似文献   

19.
The aim of this study was to characterize the polysaccharides and lipid fractions of membrane foulants in a full-scale membrane bioreactor (MBR) treating municipal wastewater. Both of these polymeric compounds are major components of bacterial lipopolysaccharides and are impacting membrane fouling; however most of the data so far have been collected by determining sum parameters rather than the detailed composition of these polymers.Photometric analysis of sugars showed that uronic acids (glucuronic, mannuronic and galacturonic acid) as common units of bacterial polysaccharides accounted for 8% (w/w) of extracellular polymeric substances (EPS) in activated sludge flocs. Further the so-called polysaccharide peak of EPS, with a molecular weight >10 kDa according to size exclusion chromatography, was proven to contain bacterial sugar units as shown by high resolution LC-MS. Interestingly, only traces of uronic acids could be detected in EPS of the membrane fouling layer.A far more dramatic enrichment in the fouling layer was revealed for the lipid fraction of EPS, which was determined as fatty acid methyl esters by GC-MS. The weight percentage of fatty acids in EPS extracted from fouled ultrafiltration membranes was much higher (10%) than in the activated sludge itself (1-3%). The fatty acids accumulated on the membrane fouling layer were obviously not only of microbial origin (C16:0, C18:0) but also derived from the raw wastewater itself (C9:0). Hydrophobic interaction of lipids with the PVDF (polyvinylidene fluoride) membrane material therefore seems a plausible explanation for the observed fouling phenomenon. The results suggest that fatty acids from bacterial lipopolysaccharides as well as from synthetic sources are of much higher relevance to membrane fouling than previously assumed.  相似文献   

20.
Zheng X  Ernst M  Jekel M 《Water research》2009,43(1):238-59
Ultrafiltration (UF) membranes can be used after conventional wastewater treatment to produce particle free and hygienically safe water for reuse. However, membrane fouling affects the performance of UF to a large extent. Stirred cell tests with UF membrane show high flux decline filtering treated domestic wastewater. Investigation on the impact of size fractioned substances indicates that dissolved substances are major foulants affecting water filterability. Dissolved organic substances in feed and permeate samples of the stirred cell tests are analyzed by liquid chromatography with online organic carbon detection (LC-OCD). The resulting chromatograms displayed a significant difference of feed and permeate samples in the range of large molecules identified as biopolymer peak. The substances detected in this peak (mostly macro polysaccharide-like and protein-like molecules) are almost completely retained by UF membranes. Quantified investigation shows that biopolymer concentration influences filterability of corresponding water sample proportionally. The apparent magnitude of delivered biopolymer to membrane has a striking correlation with fouling resistance. The relationship was verified to be reproducible using different water samples. Mechanism analysis demonstrates that based on the delivered biopolymer load to membrane pore blocking or cake/gel fouling is the main fouling mechanism in the present experiment conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号