首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Bayesian statistical water quality model is demonstrated to predict fecal-indicator bacterial concentrations for waterbodies without sufficient monitoring data for data-intensive modeling techniques. Using a truncated bivariate normal likelihood function and the readily available observations of flow and bacterial concentration, the Bayesian approach propagates the uncertainty in the model parameterization to the final predictions of in-stream bacterial concentration. The proposed model captures the variation in the magnitude of bacterial loading between dry and wet conditions by estimating separate sets of model parameters for different flow conditions, but also has the capability to pool the data among flow conditions. The model can be used in two ways: first, the model specifies the percent of time that the recreational season in-stream concentration is not in compliance with the relevant water quality standard, and second, the model estimates the necessary bacterial load reduction for multiple flow conditions to meet the relevant water quality standard. Using an eleven year monitoring record for a site sampled at a monthly frequency on the Youghiogheny River in southwestern Pennsylvania, USA, the model parameters are updated and posterior predictions are generated for each 2-year increment. After six years of sampling, the predicted percent of time that the recreational season in-stream bacterial concentration is not in compliance with the relevant water quality is 82% with 95% CI(80,85), and the bacterial load reductions required to meet the standard are 14.7 CI(14.6,14.8), 14.5 CI(14.3, 14.6), and 14.0 CI(13.9, 14.2) log10(cfu/day) for the high, normal, and dry flow conditions, respectively. The change in estimated load reduction and percent exceedance resulting from additional monitoring for this site becomes small after six years of sampling, indicating that a decision does not need to be postponed for additional monitoring.  相似文献   

2.
The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation.  相似文献   

3.
4.
Kong RY  Lee SK  Law TW  Law SH  Wu RS 《Water research》2002,36(11):2802-2812
A rapid multiplex PCR (m-PCR) method that allows the simultaneous detection, in a single tube, of six commonly encountered waterborne pathogens is developed. The target genes used were: the aerolysin (aero) gene of Aeromonas hydrophila, the invasion plasmid antigen H (ipaH) gene of Shigella flexneri, the attachment invasion locus (ail) gene of Yersinia enterocolitca, the invasion plasmid antigen B (ipaB) gene of Salmonella typhimurium, the enterotoxin extracellular secretion protein (epsM) gene of Vibrio cholerae and a species-specific region of the 16S-23S rDNA (Vpara) gene of Vibrio parahaemolyticus were used as the gene targets. Multiplex PCR using the six pairs of primers produced specific amplicons of the expected sizes from mixed populations of reference bacterial strains in seawater and from pure cultures. The m-PCR assay was specific and rapid, with a turnaround time of < 12 h. The detection limit of the assay for the bacterial targets was estimated at 10(0)-10(2) cfu. Multiplex PCR analysis was performed on 19 seawater samples collected around Hong Kong and the results indicated significant levels of four bacterial pathogens at several sites where primary sewage wastes are discharged, and the levels of which showed no correlation with E. coli counts. Overall, both laboratory and field validation results demonstrated that the m-PCR assay developed in this study could provide a cost-effective and informative supplement to conventional microbiological methods for routine monitoring and risk assessment of water quality.  相似文献   

5.
6.
Pesticides in Portuguese surface and ground waters   总被引:14,自引:0,他引:14  
Pesticides used in Portuguese agricultural areas have been found in surface and ground waters. In the surface water collected in three river basins from 1983 to 1999, insecticides and herbicides were detected from the monitored pesticides, particularly atrazine, chlorfenvinphos (Z+E), alpha- and beta-endosulfan, lindane, molinate and simazine, reaching the maximum values, respectively, of 0.63, 31.6, 0.18 microg/L (alpha-endosulfan), 0.18 microg/L (beta-endosulfan), 0.24, 48 and 0.3 microg/L. In the ground water collected from the wells of seven agricultural areas from 1991 to 1998, several monitored herbicides were detected: alachlor, atrazine, metolachlor, metribuzine and simazine, reaching the maximum concentration values of 13, 30, 56, 1.4 and 0.4 microg/L, respectively. The herbicides more frequently detected were atrazine (64%), simazine (45%) and alachlor (25%). Other than these, the monitored pesticides can be present in Portuguese surface and ground waters. Therefore, to improve the analytical conditions, the use of multiresidue methods and automated techniques are desirable in future work.  相似文献   

7.
A molecular method based on the detection of mitochondrial DNA from various animal species was developed to track the origin of surface water pollutions, and to differentiate human and animal sources. Mitochondrial DNA sequences were used to design PCR primers specific for human, bovine, ovine and porcine DNA using single, multiplex and nested PCR protocols. The primers were tested with DNA extracted from untreated domestic sewage, agricultural soils run-off, swine farm effluents and water from two rivers with known pollution sources. At least one of the four species was detected in most of these samples. The limit of detection in wastewater was 10(3)-10(4) cells L(-1) with a multiplex PCR protocol. This is the first report of a method using eukaryotic genetic DNA to detect and differentiate animal DNA from fecal sources in water. This innovative method is simple and could be used to quickly differentiate sources of pollution in a watershed.  相似文献   

8.
ABSTRACT

This paper investigates the contamination of floodwaters in the urban center of Can Tho city, Vietnam. We sampled water from sewers, surface water bodies, and flood, before, during, and after specific flooding events. Total nucleic acid was extracted from the samples and subjected to a quantitative polymerase chain reaction (qPCR) to detect specific enteric pathogens. The difference between pathogen concentrations in floodwater and sewer water was compared by using the Mann Whitney U test. Correlations between the different pathogens were determined using the non-parametric Spearman test. E. coli and Rotavirus-A were the most prevalent pathogens in floodwater. We observed a weak association between E. coli and Rotavirus in flood-related waters (r < 0.5). Floodwater quality showed no difference to sewer water quality in terms of the E. coli and Rotavirus A concentrations (p > 0.05). Our results indicate that floodwater poses a significant urban public health risk due to the presence of enteric pathogens.  相似文献   

9.
Only recently, attention has been drawn towards the occurrence of pharmaceuticals in the environment. In recent years many reports have been made on the occurrence of the large, differentiated group of pharmaceuticals in waste water, surface water, ground water and in soil. In this study, we demonstrate the applicability of a previously developed LC-MS/MS method by evaluating in waste water and surface water samples from Belgium the occurrence of 8 pharmaceuticals and 1 pesticide (flubendazole, pipamperone, rabeprazole, domperidone, ketoconazole, itraconazole, cinnarizine, miconazole and propiconazole). Removal rates in five public waste water treatment plants were assessed. Introduction of several compounds into the aquatic environment by discharge of effluent could be demonstrated. For several compounds, the highest concentrations (up to 35.6 μg/l for pipamperone) were observed in the effluent of a WWTP receiving water from chemo-pharmaceutical and other industrial companies. The occurrence of these compounds in the aquatic environment was assessed by analyzing 16 surface water samples, taken from various locations. Four pharmaceuticals (flubendazole, pipamperone, domperidone and cinnarizine) could be detected in at least one sample at low concentrations (up to 26.4 ng/l). The pesticide propiconazole was found in comparable concentrations (up to 85.9 ng/l) as in effluent, suggesting potential introduction by direct seepage of water from rural grounds. The highest concentrations of flubendazole, pipamperone, domperidone, propiconazole and cinnarizine (up to 961.3 ng/l) were observed in a sample, taken near the discharge of a WWTP receiving water from chemo-pharmaceutical and other industries. An initial environmental risk assessment was done based on these results.  相似文献   

10.
Quantitative microbial health risk assessment requires accurate enumeration of pathogens in hazard-containing matrices as part of the risk characterization process. As part of a risk management-oriented study of cattle feedlot waste contaminants, we investigated the utility of quantitative real-time PCR (qPCR) for surveying the microbial constituents of different faecal wastes. The abundance of Escherichia coli and enterococci were first estimated in five cattle feedlot waste types from five localities. Bacteria were quantified using two culture methods and compared to the number of genome copies detected by qPCR targeted at E. coli and Enterococcus faecalis. Bacterial numbers detected in the different wastes (fresh faeces, pen manure, aged manure, composted manure, carcass manure compost) ranged from 10−7 to 102 g−1 (dry weight). Both indicator groups were detected by qPCR with a comparable sensitivity to culture methods across this range. qPCR measurements of E. coli and E. faecalis correlated well with MPN and spread plate data. As a second comparison, we inoculated green fluorescent protein (GFP) labeled reference bacteria into manure samples. GFP labeled E. coli and Listeria monocytogenes were detected by qPCR in concentrations corresponding to between 18% and 71% of the initial bacterial numbers, compared to only 2.5-16% by plating. Our results supported our selection of qPCR as a fast, accurate and reliable system for surveying the presence and abundance of pathogens in cattle waste.  相似文献   

11.
We measured the concentrations of four host-specific (human, dog, cow, and horse Bacteroidales), four generic fecal (16S total Bacteroidales and Escherichia coli, 23S Enterococcus and uidA E. coli,) and two universal bacterial (16S universal and rpoB universal) DNA targets by qPCR in raw sewage and pooled fecal samples from dogs, cows, horses, and Canada Geese. A spiking protocol using the non-fecal bacterium Pseudomonas syringae pph6 was developed to estimate the recovery of DNA from fecal and environmental samples. The measured fecal marker concentrations were used to calculate baseline ratios and variability of host-specific to generic indicators for each host type. The host-specific markers were found in high concentrations (8-9 log10 copies/g dry wt.) in their respective hosts' samples, which were equal to or greater than the concentrations of generic E. coli and Enterococcus markers, lending support to the use of host-specific and generic Bacteroidales as sensitive indicators of fecal pollution. The host-specific markers formed a consistent percentage of total Bacteroidales in target host feces and raw sewage, with human-specific comprising 82%, dog-specific 6%, cow-specific 4% and horse-specific 2%. Based on this limited data set, the measurement of host-specific indicators by qPCR has several promising applications. These applications include determining the percentage of total Bacteroidales contributed by a specific host type, using the ratios of host-specific markers to E. coli or Enterococcus to estimate the contribution of each source to these regulated fecal indicator bacteria, and estimating the mass of feces from each host type in environmental samples.  相似文献   

12.
Sungwoo Bae 《Water research》2009,43(19):4850-4859
We investigated the persistence of feces-derived Bacteroidales cells and their DNA in seawater under natural conditions using an optimized chemical method based on co-extraction of nucleic acids with propidium monoazide (PMA), which interferes with PCR amplification of molecular markers from extracellular DNA and dead bacterial cells. The previously validated Bacteroidales assays BacUni-UCD, BacHum-UCD, BacCow-UCD, and BacCan-UCD were utilized to determine concentrations of Bacteroidales genetic markers targeting all warm-blooded animals, humans, cows and dogs, specifically, over a period of 24 d. Microcosms containing mixed feces in dialysis tubing were exposed to seawater under flow-through conditions at ambient temperature in the presence and absence of sunlight. Using a two-stage plus linear decay model, the average T99 (two-log reduction) of host-specific Bacteroidales cells was 28 h, whereas that of host-specific Bacteroidales DNA was 177 h. Natural sunlight did not affect the survival of uncultivable Bacteroidales cells and their DNA with the exception of the BacCow-UCD marker. Bacteroidales DNA, as measured by quantitative PCR (qPCR) without PMA, persisted for as long as 24 d at concentrations close to the limit of detection. Culturable Enterococcus cells were detected for only 70 h, whereas Enterococcus cells measured by qPCR with and without PMA persisted for 450 h. In conclusion, measuring Bacteroidales DNA without differentiating between intact and dead cells or extracellular DNA may misinform about the extent of recent fecal pollution events, particularly in the case of multiple sources of contamination with variable temporal and spatial scales due to the relatively long persistence of DNA in the environment. In contrast, applying qPCR with and without PMA can provide data on the fate and transport of fecal Bacteroidales in water, and help implement management practices to protect recreational water quality.  相似文献   

13.
In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were collected during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples collected during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both Campylobacter jejuni mapA and Salmonella invA genes detected in 10% samples collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 and 4.3 × 102 genomic copies per 500 ml of water Giardia lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.  相似文献   

14.
He LM  Lu J  Shi W 《Water research》2007,41(14):3132-3140
Recreational water quality is assessed by using water quality objectives for fecal indicator bacteria (FIB) including total coliform, fecal coliform (or E. coli), and/or Enterococcus. It is required under the Clean Water Act that a TMDL be developed for a bacteria-impaired water body. The development and implementation of bacterial TMDLs has proven challenging and often difficult due to unknown source(s) of FIB. This study found that FIB levels varied significantly in flowing water, ponded water, and associated sediment. FIB levels in isolated ponded water in waterways were significantly higher than in flowing water. Sediment under ponded water contained a great amount of FIB. Furthermore, FIB concentrations in ponded water tended to increase with increasing water temperature and to decrease with increasing water salinity. The result provides the field evidence of survival/growth of FIB in water and sediment under ambient conditions in southern California. A holistic approach including natural sources (e.g., a reference system) should be considered for practical and applicable purposes while developing and implementing bacterial TMDLs for pathogen-impaired waterbodies.  相似文献   

15.
16.
17.
Walters SP  Thebo AL  Boehm AB 《Water research》2011,45(4):1752-1762
Fecal pollution enters coastal waters through multiple routes, many of which originate from land-based activities. Runoff from pervious and impervious land surfaces transports pollutants from land to sea and can cause impairment of coastal ocean waters. To understand how land use practices and water characteristics influence concentrations of fecal indicator bacteria (FIB) and pathogens in natural waters, fourteen coastal streams, rivers, and tidal lagoons, surrounded by variable land use and animal densities, were sampled every six weeks over two years (2008 & 2009). Fecal indicator bacteria (FIB; Escherichia coli and Enterococci) and Salmonella concentrations, the occurrence of Bacteroidales human, ruminant, and pig-specific fecal markers, E. coli O157:H7, and Shiga toxin (stx) genes present in E. coli, were measured. In addition, environmental and climatic variables (e.g., temperature, salinity, rainfall), as well as human and livestock population densities and land cover were quantified. Concentrations of FIB and Salmonella were correlated with each other, but the occurrence of host-specific Bacteroidales markers did not correlate with FIB or pathogens. FIB and Salmonella concentrations, as well as the occurrence of E. coli harboring stx genes, were positively associated with the fraction of the surrounding subwatershed that was urban, while the occurrence of E. coli O157:H7 was positively associated with the agricultural fraction. FIB and Salmonella concentrations were negatively correlated to salinity and temperature, and positively correlated to rainfall. Areal loading rates of FIB, Salmonella and E. coli O157:H7 to the coastal ocean were calculated for stream and river sites and varied with land cover, salinity, temperature, and rainfall. Results suggest that FIB and pathogen concentrations are influenced, in part, by their flux from the land, which is exacerbated during rainfall; once waterborne, bacterial persistence is affected by water temperature and salinity.  相似文献   

18.
Chen B  Xuan X  Zhu L  Wang J  Gao Y  Yang K  Shen X  Lou B 《Water research》2004,38(16):3558-3568
Ten polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in 17 surface water samples and 11 sediments of four water bodies, and 3 soils near the water-body bank in Hangzhou, China in December 2002. It was observed that the sum of PAHs concentrations ranged from 0.989 to 9.663 microg/L in surface waters, from 132.7 to 7343 ng/g dry weight in sediments, and from 59.71 to 615.8 ng/g dry weight in soils. The composition pattern of PAHs by ring size in water, sediment and soil were surveyed. Three-ring PAHs were dominated in surface waters and soils, meanwhile sediments were mostly dominated by four-ring PAHs. Furthermore, PAHs apparent distribution coefficients (K(d)) and solid f(oc)-normalized K(d) (e.g. K(oc)= K(d) / f(oc)) were calculated. The relationship between logK(oc) and logK(ow) of PAHs for field data on sediments and predicted values were compared. The sources of PAHs in different water bodies were evaluated by comparison of K (oc) values in sediments of the river downstream with that in soils. Hangzhou section of the Great Canal was heavily polluted by PAHs released from industrial wastewater in the past and now PAHs in sediment may serve as sources of PAHs in surface water. PAHs in Qiantang River were contributed from soil runoff. Municipal road runoff was mostly contributed to West Lake PAHs.  相似文献   

19.
Most library-dependent bacterial source tracking studies using Escherichia coli (E. coli) have focused on strain diversity of isolates obtained from known human and animal faecal sources for library development. In contrast, this study evaluated the genotype variation of E. coli isolated from natural surface water using pulsed field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR) to better understand these naturally occurring populations. A total of 650 water samples were collected over a nine month period from eleven sampling stations from Lake Waco and Belton Lake in Central Texas. Of the 650 water samples collected, 412 were positive for E. coli, yielding a total of 631 E. coli isolates (1-12 isolates collected per sample). PFGE and ERIC-PCR patterns were successfully generated for 555 isolates and were compared using the curve-based Pearson's product-moment correlation coefficient. The 555 E. coli isolates represented 461 PFGE genotypes, with 84% (386/461) of the genotypes being represented by individual isolates. The remaining 75 genotypes were represented by 2-5 isolates each. Using ERIC-PCR, the 555 E. coli isolates represented 175 genotypes, with 63% (109/175) of the genotypes being represented by individual isolates. In contrast to the PFGE results, two ERIC-PCR genotypes represented 37% of the E. coli isolates, (83 and 124 isolates, respectively), and were found throughout the watersheds both spatially and temporally. Based on the PFGE genotype diversity of water isolates, there is little evidence that a small number of environmentally-adapted E. coli represent dominant populations in the studied waterbodies. However, with the lower discriminatory power technique ERIC-PCR, an opposing conclusion might have been drawn. These results emphasize the importance of considering the resolving power of the source tracking technique being used when assessing strain diversity and geographical stability.  相似文献   

20.
McLellan SL  Salmore AK 《Water research》2003,37(11):2700-2708
We conducted a comprehensive regional spatial assessment of bacterial water quality in order to determine the points of entry of fecal pollution into a swimming beach area on Lake Michigan that historically has had numerous water quality advisories for elevated levels of Escherichia coli (E. coli). Intensive, consecutive-day water samples were collected during dry and rainy conditions across multiple shoreline and offshore sites, and E. coli levels were enumerated from these samples. For both dry and rainy days, shoreline sites demonstrated significantly higher E. coli levels than offshore regions. We found that offshore (10-150m from shore) E. coli levels did not exceed 235CFU/100ml in more than 5% of the samples collected for 19 surveys (n=209). In contrast, samples taken at the beach area exceeded 235CFU/100ml in 66% of the samples collected for 43 shoreline surveys (n=675). Locally high E. coli levels coincided with bird presence and stormwater at the swimming beach located within the marina, and were unrelated to E. coli levels in connecting harbor waters. We conclude that beach water quality may be impacted by local, persistent contamination, which may confound routine beach monitoring and prevent the detection of regional pollution from other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号