首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.  相似文献   

2.
Liu T  Chen ZL  Yu WZ  You SJ 《Water research》2011,45(5):2111-2121
This study focuses on organic membrane foulants in a submerged membrane bioreactor (MBR) process with pre-ozonation compared to an individual MBR using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. While the influent was continuously ozonated at a normal dosage, preferable organic matter removal was achieved in subsequent MBR, and trans-membrane pressure increased at a much lower rate than that of the individual MBR. EEM fluorescence spectroscopy was employed to characterize the dissolved organic matter (DOM) samples, extracellular polymeric substance (EPS) samples and membrane foulants. Four main peaks could be identified from the EEM fluorescence spectra of the DOM samples in both MBRs. Two peaks were associated with the protein-like fluorophores, and the other ones were related to the humic-like fluorophores. The results indicated that pre-ozonation decreased fluorescence intensities of all peaks in the EEM spectra of influent DOM especially for protein-like substances and caused red shifts of all fluorescence peaks to different extents. The peak intensities of the protein-like substances represented by Peak T1 and T2 in EPS spectra were obviously decreased as a result of pre-ozonation. Both external and internal fouling could be effectively mitigated by the pre-ozonation. The most primary component of external foulants was humic acid-like substance (Peak C) in the MBR with pre-ozonation and protein-like substance (Peak T1) in the individual MBR, respectively. The content decrease of protein-like substances and structural change of humic-like substances were observed in external foulants from EEM fluorescence spectra due to pre-ozonation. However, it could be seen that ozonation resulted in significant reduction of intensities but little location shift of all peaks in EEM fluorescence spectra of internal foulants.  相似文献   

3.
In this study, for the first time a full-scale membrane bioreactor (MBR) was investigated with focus on organic compounds in activated sludge over a period of approximately 2 years. Soluble extracellular polymeric substances (EPS) in the sludge supernatant and permeate as well as bound EPS extracted from fouled membranes were determined photospectrometrically and revealed a typical composition of three main components in the order metals>humic acids>carbohydrates>proteins. Results showed an important influence on membrane fouling by soluble humic substances and carbohydrates in complexes with metal cations. It was found that Fe(2+) and Fe(3+) play a decisive role in natural organic matter (NOM) complexation and subsequent membrane blockage. The determination of molar mass distribution in supernatant and permeate by size exclusion chromatography (SEC) revealed a significant retention of macromolecular compounds by the porous membranes in the range of 10-50%.  相似文献   

4.
Geng Z  Hall ER 《Water research》2007,41(19):4329-4338
The physical and biochemical properties of activated sludge mixed liquor, including floc size distribution, zeta potential, relative hydrophobicity, and bound and unbound (soluble) extracellular polymeric substances (EPS), were examined in this study to evaluate their relationship to membrane fouling. Mixed liquors from a membrane enhanced biological phosphorus removal (MEBPR) process and a conventional enhanced biological phosphorus removal (CEBPR) process were compared. It was found that the floc size distribution and the amount of soluble EPS in the mixed liquor were the most important properties that significantly influenced the fouling propensity of sludge. Contrary to the literature, the content of EPS bound in activated sludge flocs was not found to be directly associated with membrane fouling, and sludge surface properties such as zeta potential and relative hydrophobicity were not closely related to the observed differences in the fouling tendencies of the two types of sludge.  相似文献   

5.
The aim of this study is to compare the effect of constant and variable influent organic loadings on membrane fouling in submerged membrane bioreactors (sMBRs). Two identical lab-scale sMBRs were operated for 162 days at an SRT of 30 days, whereas the influent organic loading was kept constant in one MBR, and varied in another. The microbial characteristics of sludge in terms of MLSS, bound EPS, EPS in the supernatant and particle size distribution were investigated in order to evaluate their respective effect on membrane fouling. During the start-up period, membrane fouling in the MBR fed with variable loadings was more serious than that in the MBR with the constant loading. However, at the stable state, the fouling tendency was clearly reversed with less membrane fouling for variable feed strength. It was shown that the contents of polysaccharides in the supernatant and particle size of the bioflocs were responsible for the observed differences in the fouling tendencies of the two MBRs.  相似文献   

6.
The initial fouling characteristics of aerobic submerged membrane bioreactors (MBRs) were analysed under different flux conditions. Physico-chemical analyses of the mixed liquor hinted that carbohydrates were more important to membrane fouling than proteins. However, this contrasted with the characterisation of foulants on the membrane surfaces. Micro-structural analyses of the foulants on the membrane surfaces showed that the dominant foulants were different under different flux conditions. Membrane fouling occurred through a biofilm-dominated process under lower flux conditions, but the mechanism shifted towards a non-biofilm, organic fouling process as the flux was increased. In spite of the differences in fouling mechanisms, it was found that the protein fraction on the membrane surfaces, in the initial stages of MBR operations, had the greatest impact in the rise of transmembrane pressure.  相似文献   

7.
Effect of temperature shocks on membrane fouling in membrane bioreactors   总被引:1,自引:0,他引:1  
Temperature is known to influence the biological performance of conventional activated sludge systems. In membrane bioreactors (MBRs), temperature not only affects the bioconversion process but is also shown to have an effect on the membrane performance. Four phenomena are generally reported to explain the higher resistance for membrane filtration found at lower temperatures: (1) increased mixed liquor viscosity, reducing the shear stress generated by coarse bubbles, (2) intensified deflocculation, reducing biomass floc size and releasing EPS into the mixed liquor, (3) lower backtransport velocity and (4) reduced biodegradation of COD. Although the higher resistance at low temperatures has been reported in several papers, the relation with supernatant composition has not been investigated before. In this paper, the composition of the soluble fraction of the mixed liquor is related to membrane performance after exposing the sludge to temperature shocks. Flux step experiments were performed in an experimental system at 7, 15, and 25° Celsius with sludge that was continuously recirculated from a pilot-scale MBR. After correcting the permeate viscosity for temperature, higher membrane fouling rates were obtained for the lower temperature in combination with low fouling reversibility. The soluble fraction of the MBR mixed liquor was analysed for polysaccharides, proteins and submicron particle size distribution. At low temperature, a high polysaccharide concentration was found in the experimental system as compared to the MBR pilot. Upon decreasing the temperature of the mixed liquor, a shift was found in particle size towards smaller particles. These results show that the release of polysaccharides and/or submicron particles from sludge flocs could explain the increased membrane fouling at low temperatures.  相似文献   

8.
We investigated seasonal variation in membrane fouling in membrane bioreactors (MBRs) treating municipal wastewater regarding the difference between physically reversible and irreversible fouling. Two separate MBRs with different solid retention times (SRTs) operated in parallel for about 200 days including high- and low-temperature periods to evaluate the effect of operating conditions on seasonal variation of membrane fouling. Seasonal variations of both types of membrane fouling (i.e., physically reversible and irreversible fouling) were observed for the MBR with short SRT (13 days). However, in the MBR with long SRT (50 days), there were no significant seasonal variations in both types of membrane fouling. In the MBR with short SRT, the trends in the seasonal variation in the development rates of physically reversible and irreversible fouling were different. Physically reversible fouling was more significant in the low-temperature period, while physically irreversible fouling developed more rapidly in the high-temperature period. The development rates of physically reversible fouling can be related to the concentration of dissolved organic matter in the mixed liquor suspension of MBRs; whereas those of physically irreversible fouling could not be explained by the concentration of dissolved organic matter. The characteristics of dissolved organic matter differed depending on the temperature period, and the trends of dissolved organic matter variation in mixed liquor were similar with those of foulants that caused physically irreversible fouling. The results obtained in this study indicated that seasonal variation in physically reversible and irreversible fouling is related to changes in quantity and quality of organic matter, respectively.  相似文献   

9.
We have combined a turbulent jet flow ozone contactor (TJC) with a membrane bioreactor (MBR) to establish a zero-discharge system in terms of excess sludge in the MBR. The TJC-MBR system was compared with the conventional MBR (Control-MBR) with respect to i) the size and zeta potential of the sludge particles, ii) the loosely bound extra-cellular polymeric substances (EPSs) and tightly bound EPS of the microbial flocs, iii) the porosity and biovolume of the bio-cake accumulated on the membrane, and iv) the membrane permeability. The TJC system generated the ozonated sludge with a negligible amount of loosely bound EPS and a positive zeta potential. As a result, when such ozonated sludge was recycled, the average size of the sludge particles (e.g., microbial flocs) increased in the TJC-MBR. Consequently the bio-cake formed in the TJC-MBR had greater porosity than that in the Control-MBR, giving rise to higher membrane permeability in the TJC-MBR.  相似文献   

10.
In this study, activated sludge characteristics were studied with regard to membrane fouling in membrane bioreactors (MBRs) for two pilot plants and one full-scale plant treating municipal wastewater. For the full-scale MBR, concentrations of extracellular polymeric substances (EPS) bound to sludge flocs were shown to have seasonal variations from as low as 17mgg(-1) dry matter (DM) in summer up to 51mg(gDM)(-1) in winter, which correlated with an increased occurrence of filamentous bacteria in the colder season. Therefore, it was investigated at pilot-scale MBRs with different sludge retention times (SRTs) whether different EPS contents and corresponding sludge properties influence membrane fouling. Activated sludge from the pilot MBR with low SRT (23d) was found to have worse filterability, settleability and dewaterability. Photometric analysis of EPS extracts as well as LC-OCD measurements showed that it contained significantly higher concentrations of floc-bound EPS than sludge at higher SRT (40d) The formation of fouling layers on the membranes, characterised by SEM-EDX as well as photometric analysis of EPS extracts, was more distinct at lower SRT where concentrations of deposited EPS were 40-fold higher for proteins and 5-fold higher for carbohydrates compared with the membrane at higher SRT. Floc-bound EPS and metals were suggested to play a role in the fouling process at the full-scale MBR and this was confirmed by the pilot-scale study. However, despite the different sludge properties, the permeability of membranes was found to be similar.  相似文献   

11.
A membrane bioreactor (MBR) is a promising wastewater treatment technology, but there is a need for efficient control of membrane fouling, which increases operational and maintenance costs. Soluble microbial products (SMP) have been reported to act as major foulants in the operation of MBRs used for wastewater treatment. In this study, SMP in MBRs operated with different sludge retention times (SRTs) were investigated by means of various analytical techniques and their relations to the evolution of membrane fouling were considered. Bench-scale filtration experiments were carried out in a laboratory with synthetic wastewater to eliminate fluctuations that would occur with the use of real wastewater and that would lead to fluctuations in compositions of SMP. Three identical submerged MBRs were operated for about 50 days under the same conditions except for SRT (17, 51 and 102 days). Accumulation of SMP in the MBRs estimated by conventional analytical methods (i.e., the phenol-sulfuric acid method and the Lowry method) was significant in the cases of short SRTs. However, the degrees of membrane fouling in the MBRs were not directly related to the concentrations of SMP in the reactors estimated by the conventional analytical methods. Non-conventional analytical methods such as excitation-emission matrix (EEM) fluorescence spectroscopy revealed that characteristics of SMP in the three reactors considerably differed depending on SRT. Foulants were extracted from the fouled membranes at the end of the operation and were compared with SMP in each MBR. It was clearly shown that characteristics of the foulants were different depending on SRT, and similarities between SMP and the extracted foulants were recognized in each MBR on the basis of results of EEM measurements. However, such similarities were not found on the basis of results obtained by using the conventional methods for analysis of SMP. The results of this study suggest that the use of conventional methods for analysis of SMP is not appropriate for investigation of membrane fouling in MBRs.  相似文献   

12.
Meng F  Zhou Z  Ni BJ  Zheng X  Huang G  Jia X  Li S  Xiong Y  Kraume M 《Water research》2011,45(15):4661-4671
This article presents a study aimed at the fractionation and characterization of what is thought to be one of the most complex organic mixtures produced by activated sludge: biomacromolecules (BMM). Photometric quantification combined with excitation-emission matrix (EEM) fluorescence spectroscopy and nuclear magnetic resonance (NMR) measurements were used to characterize BMM in a membrane bioreactor (MBR) from a chemical perspective. Overall, the BMM in sludge supernatant were mainly present in three fractions: colloidal BMM (BMMc, >0.45 μm), biopolymeric BMM (BMMb, 0.45 μm-100 kDa) and low molecular weight (MW) fraction (<5 kDa). The analysis of fluorescence regional integration (FRI) showed that the organics in membrane permeate and those in the low-MW fraction of sludge supernatant were of similar chemical composition. The characterization by NMR suggested that the BMMc fraction had similar carbon content of proteins and polysaccharides. In contrast, the BMMb and the low-MW BMM were proved to be carbonaceous and aromatics, respectively. Moreover, because of the high MW and gelling property, polysaccharides were found to have a high potential to accumulate on the membranes. In addition, the lipids present in the BMMb of the sludge supernatant were demonstrated to be another important foulant due to their large size. Our results also indicated that aromatic proteins had a higher fouling propensity than tryptophan proteins though they were of similar size nature. This work could be useful for better understanding of the chemical nature of BMMs in MBRs.  相似文献   

13.
Recent investigations indicate the relevance of extracellular polymeric substances (EPS) in terms of fouling of low-pressure membranes in advanced wastewater treatment. In this study, the high impact of the macromolecular fraction of effluent organic matter on fouling was confirmed in cross-flow ultrafiltration experiments using secondary effluent with and without autochthonous biopolymers. A method for the extraction of a natural mixture of EPS derived from the bacterium Sinorhizobium sp. is presented. Ultrafiltration of solutions of this bacterial EPS extract revealed a correlation between the concentration of EPS and the loss of permeate flux. However, in ultrafiltration tests using extracted bacterial EPS in a model solution as well as in secondary effluent without autochthonous biopolymers, the extent of membrane fouling was not identical with the fouling provoked by secondary effluent organic matter, although the biopolymer concentrations were comparable. The differences in the fouling behaviour of the extracted bacterial EPS and effluent organic matter are considered to be due to different compositions of the biopolymer fraction in terms of proteins, polysaccharides, and other organic colloids, indicating a particular impact of proteins on ultrafiltration membrane fouling.  相似文献   

14.
An innovative submerged membrane electro-bioreactor (SMEBR) was built to reduce membrane fouling through a combination of various electrokinetic processes. The objective of this research was to assess the capability of SMEBR to reduce fouling under different process conditions. At the bench scale level, using synthetic wastewater, membrane fouling of the SMEBR was compared to the fouling of a membrane bioreactor (MBR) in five runs. Different protein concentrations in the influent synthetic wastewater were selected to develop different membrane fouling potentials: high (240 mg/l), low (80 mg/l) and zero protein addition. The MBR and SMEBR were operated at a flux equal to the membrane critical flux in order to create high fouling rate conditions. Membrane fouling rate, expressed as the change in the trans-membrane pressure per day (kPa/d), decreased in the SMEBR 5.8 times (standard deviation (SD) = 2.4) for high protein wastewater, 5.1 times (SD = 2.4) for low protein content, and 1.3 times (SD = 0.7) for zero protein, when compared to the MBR. The supernatant concentrations of the soluble microbial products (SMP) were 195–210, 65–135 and less than 65 mg/l in respective experimental series. Following the bench scale study, membrane fouling was assessed in a pilot scale SMEBR, fed with raw un-clarified municipal wastewater, and operated under real-sewage variable quality conditions. The pilot SMEBR exhibited three times smaller membrane fouling rate than the MBR. It was concluded that electrokinetic processes generated by SMEBR led to a reduction of membrane fouling through: i) removal of soluble microbial products (mainly protein and polysaccharides) and colloidal organic materials; ii) change of the structure and morphology of the suspended solids due their conditioning by DC field.  相似文献   

15.
Yun MA  Yeon KM  Park JS  Lee CH  Chun J  Lim DJ 《Water research》2006,40(1):45-52
Two membrane bioreactors were operated at aerobic (DO=6.0mg/L) and anoxic (DO<0.3mg/L) conditions for the treatment of synthetic dye wastewater to determine the effect of dissolved oxygen on membrane filterability. The rate of membrane fouling for the anoxic MBR was five times faster than that for the aerobic MBR. Differences in the nature of the biofilm that was formed on the membrane surface as the result of different DO level was the main factor in the different fouling rates. The biofilm structure was characterized using digital image analysis techniques. Biofilm images were obtained using confocal laser scanning microscopy (CLSM) at various operation points. Structural parameters were then computed from these images using an image analysis software (ISA-2). The structural parameters indicated that the anoxic biofilm was thinner than the aerobic biofilm but the anoxic biofilm was spread out on the membrane surface more uniformly and densely, resulting in the higher membrane fouling. Based on the extracellular polymeric substances (EPS) visualization and quantification, it was also found that EPS, key membrane foulants were spread out more uniformly in the anoxic biofilm in spite of lower amount of EPS compared to that in the aerobic biofilm.  相似文献   

16.
Fan F  Zhou H  Husain H 《Water research》2006,40(2):205-212
The effects of sludge characteristics on critical flux were examined using a submerged membrane bioreactor pilot plant operated under different process conditions to treat municipal wastewater. The sludge in the membrane tank was characterized by measuring colloidal particle concentration, extracellular polymeric substances (EPS), mixed liquor suspended solids (MLSS), temperature, time to filter (TTF) and diluted sludge volume index (DSVI). The colloidal particle concentration was represented by the colloidal total organic carbon (TOC), which is the TOC difference between the filtrate passing through a 1.5 microm pore size filter and the permeate collected from pilot ultrafiltration membrane modules with a pore size of 0.04 microm. The results showed that the critical flux measured by the stepwise flux method was almost solely related to the colloidal TOC despite different sludges tested. In contrast, MLSS was shown to have little impact on the critical flux within the range examined. Neither TTF nor DSVI could be used to reliably predict the critical flux. Furthermore, colloidal TOC can be attributed to soluble EPS, but not bound EPS. Therefore, it is suggested that colloidal TOC be used as a new filterability index for MBR processes in wastewater treatment.  相似文献   

17.
Two parallel membrane bioreactors (2 m3 each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal wastewater under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules and conditions, the two MBRs showed different permeabilities and fouling rates. The differences were not related to the denitrification scheme. In order to find an explanation for the different membrane performances, a one-year investigation was initiated and the membrane performance as well as the operating regime and characteristics of the activated sludge were closely studied. MLSS concentrations, solid retention time, loading rates, and filtration flux were found not to be responsible for the different performance of the submerged modules. These parameters were kept identical in the two pilot plants. Instead, the non-settable fraction of the sludges (soluble and colloidal material, i.e. polysaccharides, proteins and organic colloids) was found to impact fouling and to cause the difference in membrane performance between the two MBR. This fraction was analysed by spectrophotometric and size exclusion chromatography (SEC) methods. In a second step, the origin of these substances was investigated. The results point to microbiologically produced substances such as extracellular polymeric substances (EPS) or soluble microbial products (SMP).  相似文献   

18.
The aim of this study was to characterize the polysaccharides and lipid fractions of membrane foulants in a full-scale membrane bioreactor (MBR) treating municipal wastewater. Both of these polymeric compounds are major components of bacterial lipopolysaccharides and are impacting membrane fouling; however most of the data so far have been collected by determining sum parameters rather than the detailed composition of these polymers.Photometric analysis of sugars showed that uronic acids (glucuronic, mannuronic and galacturonic acid) as common units of bacterial polysaccharides accounted for 8% (w/w) of extracellular polymeric substances (EPS) in activated sludge flocs. Further the so-called polysaccharide peak of EPS, with a molecular weight >10 kDa according to size exclusion chromatography, was proven to contain bacterial sugar units as shown by high resolution LC-MS. Interestingly, only traces of uronic acids could be detected in EPS of the membrane fouling layer.A far more dramatic enrichment in the fouling layer was revealed for the lipid fraction of EPS, which was determined as fatty acid methyl esters by GC-MS. The weight percentage of fatty acids in EPS extracted from fouled ultrafiltration membranes was much higher (10%) than in the activated sludge itself (1-3%). The fatty acids accumulated on the membrane fouling layer were obviously not only of microbial origin (C16:0, C18:0) but also derived from the raw wastewater itself (C9:0). Hydrophobic interaction of lipids with the PVDF (polyvinylidene fluoride) membrane material therefore seems a plausible explanation for the observed fouling phenomenon. The results suggest that fatty acids from bacterial lipopolysaccharides as well as from synthetic sources are of much higher relevance to membrane fouling than previously assumed.  相似文献   

19.
Membrane bioreactors (MBRs) have been actively employed for municipal and industrial wastewater treatments. So far, membrane fouling and the high cost of membranes are main obstacles for wider application of MBRs. Over the past few years, considerable investigations have been performed to understand MBR fouling in detail and to develop high-flux or low-cost membranes. This review attempted to address the recent and current developments in MBRs on the basis of reported literature in order to provide more detailed information about MBRs. In this paper, the fouling behaviour, fouling factors and fouling control strategies were discussed. Recent developments in membrane materials including low-cost filters, membrane modification and dynamic membranes were also reviewed. Lastly, the future trends in membrane fouling research and membrane material development in the coming years were addressed.  相似文献   

20.
Shear, in the form of vigorous aeration, is used to control fouling in membrane bioreactor (MBR) systems. However, shear also influences the physicochemical and biological properties of MBR biomass. The current study examines the relationship between the aeration intensity and extracellular polymeric substance (EPS) production in MBRs. Two identical submerged MBRs were operated in parallel but the aeration rate was three times greater in one of the MBRs. The concentrations of floc-associated and soluble EPS were monitored for the duration of the experiment. Microscopic images and floc-size measurements were also collected regularly. The membrane fouling potential of the biomass was quantified using the flux-step method. Increased aeration did not have a direct effect on soluble or floc-associated EPS production in the microfiltration MBRs. However, aeration intensity had a significant effect on predatory organisms. Large aquatic earthworms, Aeolosoma hemprichi, proliferated under lower shear conditions but were never observed in the high shear reactor. Predation by A. hemprichi resulted in increased floc-associated and soluble EPS production. Thus, the mixing conditions in the low shear MBR indirectly resulted in increased soluble EPS concentrations and higher fouling potential. This research suggests that predation can have a significant impact on the production rates of floc-associated and soluble EPS - key parameters driving membrane fouling in MBRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号