首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Rapid small-scale column tests (RSSCTs) examined the removal of 29 endocrine disrupting compounds (EDCs) and pharmaceutical/personal care products (PPCPs). The RSSCTs employed three lignite variants: HYDRODARCO 4000 (HD4000), steam-modified HD4000, and methane/steam-modified HD4000. RSSCTs used native Lake Mead, NV water spiked with 100–200 ppt each of 29 EDCs/PPCPs. For the steam and methane/steam variants, breakthrough occurred at 14,000–92,000 bed volumes (BV); and this was 3–4 times more bed volumes than for HD4000. Most EDC/PPCP bed life data were describable by a normalized quantitative structure–activity relationship (i.e. QSAR-like model) of the form:
where TPV is the pore volume, ρmc is the apparent density, CV is the molecular volume, Co is the concentration, 8χp depicts the molecule's compactness, and FOSA is the molecule's hydrophobic surface area.  相似文献   

2.
Eight pharmaceuticals, two polycyclic musk fragrances and nine endocrine disrupting chemicals were analysed in several waste water treatment plants (WWTPs). A membrane bioreactor in pilot scale was operated at different solid retention times (SRTs) and the results obtained are compared to conventional activated sludge plants (CASP) operated at different SRTs. The SRT is an important design parameter and its impact on achievable treatment efficiencies was evaluated. Different behaviours were observed for the different investigated compounds. Some compounds as the antiepileptic drug carbamazepine were not removed in any of the sampled treatment facilities and effluent concentrations in the range of influent concentrations were measured. Other compounds as bisphenol-A, the analgesic ibuprofen or the lipid regulator bezafibrate were nearly completely removed (removal rates >90%). The operation of WWTPs with SRTs suitable for nitrogen removal (SRT>10 days at 10 degrees C) also increases the removal potential regarding selected micropollutants. No differences in treatment efficiencies were detected between the two treatment techniques. As in conventional WWTP also the removal potential of MBRs depends on the SRT. Ultrafiltration membranes do not allow any additional detention of the investigated substances due to size exclusion. However, MBRs achieve a high SRT within a compact reactor. Nonylphenolpolyehtoxylates were removed in higher extend in very low-loaded conventional WWTPs, due to variations of redox conditions, necessary for the degradation of those compounds.  相似文献   

3.
Endocrine disrupting compounds (EDCs) are pollutants with estrogenic or androgenic activity at very low concentrations and are emerging as a major concern for water quality. Within the past few decades, more and more target chemicals were monitored as the source of estrogenic or androgenic activity in wastewater, and great endeavors have been done on the removal of EDCs in wastewater. This article reviewed removal of EDCs from three aspects, that is, physical means, biodegradation, and chemical advanced oxidation (CAO).  相似文献   

4.
A solar photocatalytic cascade reactor was constructed to study the photocatalytic oxidation of benzoic acid in water under various experimental and weather conditions at HKUST. Nine stainless steel plates coated with TiO(2) catalyst were arranged in a cascade configuration in the reactor. Photolytic degradation and adsorption were confirmed to be insignificant total organic carbon (TOC) removal mechanisms. A turbulent flow pattern and, hence, improved mixing in the liquid film were achieved due to the unique cascade design of the reactor. The photoinduced consumption of oxygen during reactions was demonstrated in a sample experiment. The proposed rate equations provided good fits to 90 data points from 17 experiments. The regression results showed that the TOC removal rates averaged over 30 min intervals did not illustrate significant dependence on TOC(0) and that I(mean) was more important in affecting the photocatalytic process within the ranges of the data examined. The percentage removal of TOC in 7 l of 100 mg/l (or 100 ppm) benzoic acid solutions increased from 30% to 83% by adding 10 ml of hydrogen peroxide solution (30 wt%). Hydrogen peroxide was also shown to enhance the efficiency of the degradation process at elevated temperatures. Ortho-, meta- and para-hydroxybenzoic acids were identified by HPLC analysis as the intermediates of benzoic acid during reactions without the addition of hydrogen peroxide solutions.  相似文献   

5.
The occurrence of 31 selected endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in Korean surface waters was investigated. The area was selected since there is a lack of information in the Seoul area on the suspected contamination of rivers by micropollutants, although over 99% of drinking water is produced from surface waters in this area that has a population of approximately 15 million inhabitants. Samples were collected from upstream/downstream and effluent-dominated creeks along the Han River, Seoul (South Korea) and analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). Most target compounds were detected in both the Han River samples (63%) and the effluent-dominated creek samples (79%). Iopromide, atenolol, TCPP, TECP, musk ketone, naproxen, DEET, carbamazepine, caffeine, and benzophenone were frequently detected in both river and creek samples, although the mean concentrations in effluent-dominated creek samples (102 ng/L-3745 ng/L) were significantly higher than those in river samples (56 ng/L-1013 ng/L). However, the steroid hormones 17β-estradiol, 17α-ethynylestradiol, progesterone, and testosterone, were not detected (< 1 ng/L) in both the river and creek samples. Numerous target compounds (15) were found to be positively correlated (over 0.8) to the conventional water quality parameters (chemical oxygen demand, biochemical oxygen demand, dissolved organic carbon, and ultraviolet absorbance). Results of this study provide increasing evidence that certain EDCs and PPCPs commonly occur in the Han River as the result of wastewater outfalls.  相似文献   

6.
The reproductive performance of high producing dairy cows has dropped severely throughout the last decades. It has already been suggested that the presence of endocrine disrupting compounds (EDCs) in the environment could be one of the reasons for this declining fertility. Reliable data concerning tissue and body fluid concentrations of these chemicals are thus crucial, but currently only scarcely available. Therefore, we selected dairy cows (≥ 6 years) from diverse locations in Belgium and analysed tissues (liver, adipose tissue, muscle, kidney, and ovaria) and body fluids (serum, follicular fluid, and milk) for their content of potential EDCs, such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). Furthermore, we collected milk and serum samples from high producing dairy cows 2-3 weeks post-partum to verify if the massive lipolysis required to sustain milk production is accompanied with an increase in EDC concentrations in milk and serum.Overall, contamination was very low (median sum PCBs liver: 11.7 ng g−1 lw), with follicular fluid samples showing no detectable contamination. CB 153 was present in each tissue sample. Strong correlations could be found between EDCs in the same tissue. The increased PCB concentrations observed in milk samples from high producing dairy cows could indicate that massive lipolysis can play a role in liberating and thereby increasing EDC concentrations in milk.Because concentrations of the most prevalent EDCs in dairy cow tissues and body fluids are very low, exposure to EDCs can hardly be considered as a major cause of declining fertility in high producing dairy cows in Belgium. As a result of this low contamination and the similarities between the female bovine and human reproductive physiology, in vitro studies based on Belgian dairy cow ovarian follicles can be considered as a valuable model to study the effects of EDCs on human reproduction.  相似文献   

7.
Begum A  Gautam SK 《Water research》2011,45(7):2383-2391
In the present study, Mg0/ZnCl2 bimetallic system was evaluated for its efficiency to dechlorinate endosulfan and lindane in aqueous phase. Presence of acetone in the reaction mixture played an important role by increasing the solubilities of both pesticides and thereby accelerating its mass transfer. Water acetone ratio of 2:1 and 1:1 (v/v) was found optimum for the dechlorination of endosulfan and lindane respectively. Presence of H+ ions in the reaction mixture (50 μl ml−1 of glacial acetic acid) accelerated the degradation efficiency of 30 ppm initial concentration of endosulfan (96% removal) and lindane (98% removal) at Mg0/ZnCl2 dose of 5/1 mg ml−1 within 30 min of reaction. Dechlorination kinetics for endosulfan and lindane (10, 30 and 50 ppm initial concentration of each pesticide) with varying Mg0/ZnCl2 doses and the time course profiles of each pesticide were well fitted into the first order dechlorination reaction. The optimum observed rate constant (kobs’) values for endosulfan (0.2168, 0.1209 and 0.1614 min−1 for 10, 30 and 50 ppm initial concentration respectively) and lindane (0.1746, 0.1968 and 0.2253 min−1 for 10, 30 and 50 ppm initial concentration respectively) dechlorination were obtained when the reactions were conducted with doses of 7.5/1 mg ml−1 and 5/1 mg ml−1 Mg0/ZnCl2 respectively. Endosulfan and lindane were completely dechlorinated into their hydrocarbon skeletons namely, Bicyclo [2,2,1] hepta 2-5 diene and Benzene respectively as revealed by GCMS analysis.  相似文献   

8.
Three tertiary-treated wastewater effluents were evaluated to determine the impact of wastewater quality (i.e. effluent organic matter (EfOM), nitrite, and alkalinity) on ozone (O3) decomposition and subsequent removal of 31 organic contaminants including endocrine disrupting compounds, pharmaceuticals, and personal care products. The O3 dose was normalized based upon total organic carbon (TOC) and nitrite to allow comparison between the different wastewaters with respect to O3 decomposition. EfOM with higher molecular weight components underwent greater transformation, which corresponded to increased O3 decomposition when compared on a TOC basis. Hydroxyl radical (OH) exposure, measured by parachlorobenzoic acid (pCBA), showed that limited OH was available for contaminant destruction during the initial stage of O3 decomposition (t < 30 s) due to the effect of the scavenging by the water quality. Advanced oxidation using O3 and hydrogen peroxide did not increase the net production of OH compared to O3 under the conditions studied. EfOM reactivity impacted the removal of trace contaminants when evaluated based on the O3:TOC ratio. Trace contaminants with second order reaction rate constants with O3 (kO3) > 105 M−1 s−1 and OH (kOH) > 109 M−1 s−1, including carbamazepine, diclofenac, naproxen, sulfamethoxazole, and triclosan, were >95% removed independent of water quality when the O3 exposure () was measurable (0-0.8 mg min/L). O3 exposure would be a conservative surrogate to assess the removal of trace contaminants that are fast-reacting with O3. Removal of contaminants with and kOH > 109 M−1 s−1, including atrazine, iopromide, diazepam, and ibuprofen, varied when O3 exposure could not be measured, and appeared to be dependent upon the compound specific kOH. Atrazine, diazepam, ibuprofen and iopromide provided excellent linear correlation with pCBA (R2 > 0.86) making them good indicators of OH availability.  相似文献   

9.
A major source of the wide presence of EDCs (Endocrine Disrupting Compounds) in water bodies is represented by direct/indirect discharge of sewage. Recent scientific literature reports data about their trace concentration in water, sediments and aquatic organisms, as well as removal efficiencies of different wastewater treatment schemes. Despite the availability of a huge amount of data, some doubts still persist due to the difficulty in evaluating synergistic effects of trace pollutants in complex matrices. In this paper, an integrated assessment procedure was used, based on chemical and biological analyses, in order to compare the performance of two full scale biological wastewater treatment plants (either equipped with conventional settling tanks or with an ultrafiltration membrane unit) and tertiary ozonation (pilot scale).Nonylphenol and bisphenol A were chosen as model EDCs, together with the parent compounds mono- and di-ethoxylated nonylphenol (quantified by means of GC-MS). Water estrogenic activity was evaluated by applying the human breast cancer MCF-7 based reporter gene assay. Process parameters (e.g., sludge age, temperature) and conventional pollutants (e.g., COD, suspended solids) were also measured during monitoring campaigns.Conventional activated sludge achieved satisfactory removal of both analytes and estrogenicity. A further reduction of biological activity was exerted by MBR (Membrane Biological Reactor) as well as ozonation; the latter contributed also to decrease EDC concentrations.  相似文献   

10.
Concerns about endocrine disrupting compounds in sewage treatment plant (STP) effluents give rise to the implementation of advanced treatment steps for the elimination of trace organic contaminants. The present study investigated the effects of ozonation (O3) and activated carbon treatment (AC) on endocrine activities [estrogenicity, anti-estrogenicity, androgenicity, anti-androgenicity, aryl-hydrocarbon receptor (AhR) agonistic activity] with yeast-based bioassays. To evaluate the removal of non-specific toxicity, a cytotoxicity assay using a rat cell line was applied. Wastewater (WW) was sampled at two STPs after conventional activated sludge treatment following the secondary clarifier (SC) and after subsequent advanced treatments: O3, O3 + sand filtration (O3-SF), and AC. Conventional treatment reduced estrogenicity, androgenicity, and AhR agonistic activity by 78-99% compared to the untreated influent WW. Anti-androgenicity and anti-estrogenicity were not detectable in the influent but appeared in SC, possibly due to the more effective removal of respective agonists during conventional treatment. Endocrine activities after SC ranged from 2.0 to 2.8 ng/L estradiol equivalents (estrogenicity), from 4 to 22 μg/L 4-hydroxytamoxifen equivalents (anti-estrogenicity), from 1.9 to 2.0 ng/L testosterone equivalents (androgenicity), from 302 to 614 μg/L flutamide equivalents (anti-androgenicity), and from 387 to 741 ng/L β-naphthoflavone equivalents (AhR agonistic activity). In particular, estrogenicity and anti-androgenicity occurred in environmentally relevant concentrations. O3 and AC further reduced endocrine activities effectively (estrogenicity: 77-99%, anti-androgenicity: 63-96%, AhR agonistic activity: 79-82%). The cytotoxicity assay exhibited a 32% removal of non-specific toxicity after O3 compared to SC. O3 and sand filtration reduced cytotoxic effects by 49%, indicating that sand filtration contributes to the removal of toxicants. AC was the most effective technology for cytotoxicity removal (61%). Sample evaporation reduced cytotoxic effects by 52 (AC) to 73% (O3), demonstrating that volatile substances contribute considerably to toxic effects, particularly after O3. These results confirm an effective removal or transformation of toxicants with receptor-mediated mode of action and non-specific toxicants during O3 and AC. However, due to the limited extractability, polar ozonation by-products were neglected for toxicity analysis, and hence non-specific toxicity after O3 is underestimated.  相似文献   

11.
The photocatalytic degradation of two phenolic compounds, p-coumaric acid and caffeic acid, was performed with a suspended mixture of TiO2 and powdered activated carbon (PAC) (at pH = 3.4 and 8). Adsorption, direct photolysis and photocatalytic degradation were studied under different pH and UV light sources (sunlight vs. 365 nm UV lamps). The potential for reusing this catalyst mixture in sequential photocatalytic runs was examined as well. Quantum yields for the direct photolysis of caffeic acid under solar and artificial 365 nm light were calculated (for the first time) as 0.005 and 0.011, respectively.A higher removal rate of contaminants by either adsorption or photocatalysis was obtained at a low pH (pH 4). Furthermore, the addition of PAC increased the removal efficiency of the phenolic compounds. Fast removal of the pollutants from the solution over three sequential runs was achieved only when both TiO2 and PAC were present. This suggests that at medium phenolic concentrations, the presence of PAC as a co-sorbent reduces surface poisoning of the TiO2 catalyst and hence improves photocatalysis degradation of phenolic pollutants.The adsorption equilibrium of caffeic acid or p-coumaric acid on TiO2, PAC and the combined mixture of TiO2 and PAC follows the Langmuir isotherm model. Experiments with PAC TiO2 mixture and olive mill wastewater (anaerobically treated and diluted by a factor of 10) showed higher removal of polyphenols than of chemical oxygen demand (COD). 87% removal of total polyphenols, compared to 58% of COD, was achieved after 24 h of exposure to 365 nm irradiation (7.6 W/m2) in the presence of a suspended mixture of TiO2 and PAC, indicating “self-selectivity” of polyphenols.  相似文献   

12.
Chen J  Zhang J  Xian Y  Ying X  Liu M  Jin L 《Water research》2005,39(7):1340-1346
In this work, a TiO(2) photocatalytic sensor was prepared and utilized into flow injection analysis (FIA) for chemical oxygen demand (COD) determination. With a positive bias potential of 0.4V (vs. Ag/AgCl) applied to the sensor and a 12-W quartz UV lamp illuminating it, photocurrent, due to the charge transfer at the interface of TiO(2) sensor and the passing solution, was recorded and its change (deltaI(Photo)) caused by the detected sample was calculated to characterize the COD value of the sample. Under the optimizing conditions, the sensor responded linearly to the COD of D-glucose solution in the range of 0.5-235 mg/L, with a linear correlation coefficient of 0.9998. Its application in artificial wastewater analysis has achieved results in good agreement with those from the conventional dichromate method; meanwhile, the process requires no hypertoxic reagents and less analysis time, suggesting that it would be another appropriate method for COD determination in water assessment.  相似文献   

13.
Municipal wastewater is supposed to be one of the most important sources of endocrine-disrupting compounds (EDCs) in water. Therefore, advanced treatments and cost-efficient techniques should be developed to prevent the spread of this type of pollution into the environment. In this view, experiments were conducted in which the removal of 17alpha-ethynylestradiol (EE2), a synthetic and persistent estrogen, from water was monitored in three upstream bioreactors (UBRs), filled with, respectively, sand, granulated activated carbon (GAC) and MnO(2) granules. Tap water, spiked with 15,000ngEE2/L was filtered through the reactors with a hydraulic retention time of approximately 1h. The removal of EE2 in the sand, GAC and MnO(2) reactors was, respectively, 17.3%,>99.8% and 81.7%. The removal in the GAC reactor was mainly due to adsorption. The MnO(2) reactor, however, removed significantly more EE2 than could be predicted from its adsorption capacity, probably thanks to its catalytic properties. These catalytic properties could make it a cost-efficient technique for the removal of EE2, but further research at more environmentally relevant concentrations is needed.  相似文献   

14.
An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV254 absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号