首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of low-temperature (7 °C) anaerobic digestion for the treatment of a trichloroethylene (TCE) contaminated wastewater was investigated. Two expanded granular sludge bed (EGSB) bioreactors (R1 and R2) were employed for the mineralisation of a synthetic volatile fatty acid based wastewater at an initial organic loading rate (OLR) of 3 kg COD m−3 d−1, and an operating temperature of 15 °C. Successive reductions in OLR to 0.75 kg COD m−3 d−1, and operational temperature to 7 °C, resulted in stable bioreactor operation by day 417, with COD removal efficiency and biogas CH4 content ≥74%, for both bioreactors. Subsequently, the influent to R1 was supplemented with increasing concentrations (10, 20, 30 mg l−1) of TCE, while R2 acted as a control. At an influent TCE concentration of 30 mg l−1, although phase average TCE removal rates of 79% were recorded, a sustained decrease in R1 performance was observed, with COD removal of 6%, and % biogas CH4 of 3% recorded on days 595 and 607, respectively. Specific methanogenic activity (SMA) assays identified a general shift from acetate- to hydrogen-mediated methanogenesis in both R1 and R2 biomass, while toxicity assays confirmed an increased sensitivity of the acetoclastic community in R1 to TCE and dichloroethylene (DCE), which contributed to acetate accumulation. Quantitative Polymerase Chain Reaction (qPCR) analysis of the methanogenic community confirmed the dominance of hydrogenotrophic methanogens in both R1 and R2, representing 71-89% of the total methanogenic population, however acetoclastic Methanosaeta were the dominant organisms, based on 16S rRNA gene clone library analysis of reactor biomass. The greatest change in the bacterial community, as demonstrated by UPGMA analysis of DGGE banding profiles, was observed in R1 biomass between days 417 and 609, although 88% similarity was retained between these sampling points.  相似文献   

2.
Anaerobic granulation describes the self-immobilisation of methanogenic consortia into dense, particulate biofilms. This procedure underpins the operation of several categories of high-rate anaerobic wastewater treatment system. Full-scale anaerobic granular sludge plants have been generally operated in the mesophilic (20-45 °C) or thermophilic (45-65 °C) temperature range. On the other hand, recent studies highlighted the economic advantages of treating wastewaters at their discharge temperatures (mostly under 18 °C), removing a costly heating process and increasing net biogas yield. However, as yet, relatively little information is available about the microbial behaviour and interactions in anaerobic granular sludge formed under psychrophilic conditions. To this end, and in order to provide a microbial insight into low-temperature anaerobic granulation, we monitored the changes in methanogenic community structure, associated with the changes in process performance. Three, laboratory-scale, expanded granular sludge bed (EGSB) bioreactors treating a synthetic glucose wastewater were tested at two temperatures of 37 ± 1 °C (R1) and 15 ± 1 °C (R2 and 3). Quantitative real-time PCR and specific methanogenic activity assays highlighted a community shift towards hydrogenotrophic methanogens, particularly the order Methanomicrobiales in the low-temperature bioreactors. Corresponding to this, denaturing gradient gel electrophoresis (DGGE) analysis identified the emergence and maintenance of a Methanocorpusculum-like organism. Our results indicate that hydrogenotrophic methanogens, particularly the Methanomicrobiales-related populations, are likely to play important roles in low-temperature anaerobic granular sludge systems. This suggests that the process efficiency could be improved by facilitating the growth and retention of this group.  相似文献   

3.
Strategies are proposed for the anaerobic treatment of lipid and phenolic-rich effluents, specifically the raw olive mill wastewater (OMW). Two reactors were operated under OMW influent concentrations from 5 to 48 g COD L−1 and Hydraulic Retention Time between 10 and 5 days. An intermittent feeding was applied whenever the reactors showed a severe decay in the methane yield. This strategy improved the mineralization of oleate and palmitate, which were the main accumulated Long-Chain Fatty Acids (LCFA), and also promoted the removal of resilient phenolic compounds, reaching remarkable removal efficiencies of 60% and 81% for two parallel reactors at the end of a feed-less period. A maximum biogas production of 1.4 m3 m−3 d−1 at an Organic Loading Rate of 4.8 kg COD m−3 d−1 was obtained. Patterns of individual LCFA oxidation during the OMW anaerobic digestion are presented and discussed for the first time. The supplementation of a nitrogen source boosted immediately the methane yield from 21 and 18 to 76 and 93% in both reactors. The typical problems of sludge flotation and washout during the anaerobic treatment of this oily wastewater were overcome by biomass retention, according to the Inverted Anaerobic Sludge Blanket (IASB) reactor concepts. This work demonstrates that it is possible to avoid a previous detoxification step by implementing adequate operational strategies to the anaerobic treatment of OMW.  相似文献   

4.
Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m−3 d−1) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l−1) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH4) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l−1 resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH4 to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H2 for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic digestion is a feasible approach for the treatment of TCE-containing wastewater.  相似文献   

5.
Yang Y  Chen Q  Wall JD  Hu Z 《Water research》2012,46(4):1176-1184
Silver nanoparticles (AgNPs, nanosilver) entering the sewers and wastewater treatment plants (WWTPs) are mostly accumulated in the sludge. In this study, we determined the impact of AgNPs on anaerobic glucose degradation, sludge digestion and methanogenic assemblages. At ambient (22 °C) and mesophilic temperatures (37 °C), there was no significant difference in biogas and methane production between the sludge treated with AgNPs at the concentrations up to 40 mg Ag/L (13.2 g silver/Kg biomass COD) and the control. In these anaerobic digestion samples, acetate and propionic acid were the only detectable volatile fatty acids (VFAs) and they were depleted in 3 days. On the other hand, more than 90% of AgNPs was removed from the liquid phase and associated with the sludge while almost no silver ions were released from AgNPs under anaerobic conditions. Quantitative PCR results indicated that Methanosaeta and Methanomicrobiales were the dominant methanogens, and the methanogenic diversity and population remained largely unchanged after nanosilver exposure and anaerobic digestion. The results suggest that AgNPs at moderate concentrations (e.g., ≤40 mg/L) have negligible impact on anaerobic digestion and methanogenic assemblages because of little to no silver ion release.  相似文献   

6.
Anaerobic digestion, microbial community structure and kinetics were studied in a biphasic continuously fed, upflow anaerobic fixed film reactor treating high strength distillery wastewater. Treatment efficiency of the bioreactor was investigated at different hydraulic retention times (HRT) and organic loading rates (OLR 5-20 kg COD m−3 d−1). Applying the modified Stover-Kincannon model to the reactor, the maximum removal rate constant (Umax) and saturation value constant (KB) were found to be 2 kg m−3 d−1 and 1.69 kg m−3 d−1 respectively. Bacterial community structures of acidogenic and methanogenic reactors were assessed using culture-independent analyses. Sequencing of 16S rRNA genes exhibited a total of 123 distinct operational taxonomic units (OTUs) comprising 49 from acidogenic reactor and 74 (28 of eubacteria and 46 of archaea) from methanogenic reactor. The findings reveal the role of Lactobacillus sp. (Firmicutes) as dominant acid producing organisms in acidogenic reactor and Methanoculleus sp. (Euryarchaeotes) as foremost methanogens in methanogenic reactor.  相似文献   

7.
Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors (3.38 l active volume) were used to directly compare psychrophilic (15 degrees C), anaerobic digestion (PAD) to mesophilic (37 degrees C) anaerobic digestion (MAD) for the treatment of a brewery wastewater (chemical oxygen demand (COD) concentration of 3,136+/-891 mg l(-1)). Bioreactor performance was evaluated by COD removal efficiency and biogas yields at a range of hydraulic and organic loading rates. Specific methanogenic activity (SMA) assays were also employed to investigate the activity of the biomass in the bioreactors. No significant difference in the COD removal efficiencies (which ranged from 85-93%) were recorded between PAD and MAD during the 194-d trial at maximum organic and hydraulic loading rates of 4.47 kg m(-3) day(-1) and 1.33 m(3) m(-3) day(-1), respectively. In addition, the methane content (%) of the biogas was very similar. The volumetric biogas yield from the PAD bioreactor was approximately 50% of that from the MAD bioreactor at an organic loading rate of 4.47 kg COD m(-3) day(-3) and an applied liquid up-flow velocity (V(up)) of 2.5 m h(-1). Increasing the V(up) in the PAD bioreactor to 5 m h(-1) resulted in a volumetric biogas production rate of approximately 4.1 l d(-1) and a methane yield of 0.28 l CH(4) g(-1) COD d(-1), which were very similar to the MAD bioreactor. Significant and negligible biomass washout was observed in the mesophilic and psychrophilic systems, respectively, thus increasing the sludge loading rate applied to the former and underlining the robustness of the latter, which appeared underloaded. A psychrotolerant mesophilic, but not truly psychrophilic, biomass developed in the PAD bioreactor biomass, with comparable maximum SMA values to the MAD bioreactor biomass. PAD, therefore, was shown to be favourably comparable to MAD for brewery wastewater treatment and biogas generation.  相似文献   

8.
Lopes SI  Wang X  Capela MI  Lens PN 《Water research》2007,41(11):2379-2392
This study investigated the effect of the COD/SO42− ratio (4 and 1) and the sulfide concentration on the performance of thermophilic (55 °C) acidifying (pH 6) upflow anaerobic sludge bed reactors fed with sucrose at an organic loading rate of 4.5 g COD lreactor−1 day−1. Sulfate reduction efficiencies amounted to 65% and 25-35% for the COD/SO42− ratios of 4 and 1, respectively. Acidification was complete at all the tested conditions and the electron flow was similar at the two COD/SO42− ratios applied. The stepwise decrease of the sulfide concentrations in the reactors with a COD/SO42− ratio of 1 by N2 stripping caused an immediate stepwise increase in the sulfate reduction efficiencies, indicating a reversible inhibition by sulfide. The degree of reversibility was, however, affected by the growth conditions of the sludge. Acidifying sludge pre-grown at pH 6, at a COD/SO42− ratio of 9 and exposed for 150 days to 115 mg l−1 sulfide, showed a slower recovery from the sulfide inhibition than a freshly harvested sludge from a full scale treatment plant (pH 7 and COD/SO42−=9.5) exposed for a 70 days to 200 mg l−1 sulfide. In the latter case, the decrease of the sulfide concentration from 200 to 45 mg l−1 (35 mg l−1 undissociated sulfide) by N2 stripping caused an immediate increase of the sulfate reduction efficiency from 35% to 96%.  相似文献   

9.
The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 °C (R1) and 55 °C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l−1 d−1 at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l−1 d−1 and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme hydrolysates. This approach offers a sustainable technology for the treatment of carbohydrate rich wastes and highlights the potential of these wastes as substrates for the generation of second-generation biofuels.  相似文献   

10.
In this study, we investigated the efficiency of dissolved methane (D-CH4) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH4 discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH4 concentration could be reduced from 63 mg COD L−1 to 15 mg COD L−1; this, in turn, resulted in an increase in total methane (CH4) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH4 concentration was as high as 104 mg COD L−1 at 15 °C because of the higher solubility of CH4 gas in liquid; the average D-CH4 concentration was reduced to 14 mg COD L−1 by degasification. Accordingly, total CH4 recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH4 concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L−1) regardless of the HRT value, the CH4 discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH4 concentration could be reduced down to 12 ± 1 mg COD L−1 by degasification at an HRT of 6.7 h, the CH4 recovery rate was 1.5 times higher under degasification than under normal operation.  相似文献   

11.
Ge H  Jensen PD  Batstone DJ 《Water research》2011,45(4):1597-1606
It is well established that waste activated sludge with an extended sludge age is inherently slow to degrade with a low extent of degradation. Pre-treatment methods can be used prior to anaerobic digestion to improve the efficiency of activated sludge digestion. Among these pre-treatment methods, temperature phased anaerobic digestion (TPAD) is one promising method with a relatively low energy input and capital cost. In this study, an experimental thermophilic (50-70 °C)-mesophilic system was compared against a control mesophilic-mesophilic system. The thermophilic-mesophilic system achieved 41% and 48% volatile solids (VS) destruction during pre-treatment of 60 °C and 65 °C (or 70 °C) respectively, compared to 37% in the mesophilic-mesophilic TPAD system. Solubilisation in the first stage was enhanced during thermophilic pre-treatment (15% at 50 °C and 27% at 60 °C, 65 °C and 70 °C) over mesophilic pre-treatment (7%) according to a COD balance. This was supported by ammonia-nitrogen measurements. Model based analysis indicated that the mechanism for increased performance was due to an increase in hydrolysis coefficient under thermophilic pre-treatment of 60 °C (0.5 ± 0.1 d−1), 65 °C (0.7 ± 0.2 d−1) and 70 °C (0.8 ± 0.2 d−1) over mesophilic pre-treatment (0.2 ± 0.1 d−1), and thermophilic pre-treatment at 50 °C (0.12 ± 0.06 d−1).  相似文献   

12.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

13.
Anaerobic wastewater treatment plants discharge dissolved methane, which is usually not recovered. To prevent emission of methane, which is a greenhouse gas, we utilized an encapsulated down-flow hanging sponge reactor as a post-treatment to biologically oxidize dissolved methane. Within 3 weeks after reactor start-up, methane removal efficiency of up to 95% was achieved with a methane removal rate of 0.8 kg COD m−3 day−1 at an HRT of 2 h. After increasing the methane-loading rate, the maximum methane removal rate reached 2.2 kg COD m−3 day−1 at an HRT of 0.5 h. On the other hand, only about 10% of influent ammonium was oxidized to nitrate during the first period, but as airflow was increased to 2.5 L day−1, nitrification efficiency increased to approximately 70%. However, the ammonia oxidation rate then decreased with an increase in the methane-loading rate. These results indicate that methane oxidation occurred preferentially over ammonium oxidation in the reactor. Cloning of the 16S rRNA and pmoA genes as well as phylogenetic and T-RFLP analyses revealed that type I methanotrophs were the dominant methane oxidizers, whereas type II methanotrophs were detected only in minor portion of the reactor.  相似文献   

14.
Dutta PK  Rabaey K  Yuan Z  Keller J 《Water research》2008,42(20):4965-4975
Most of the existing sulfide removal processes from wastewaters and waste gases require substantial amounts of energy inputs. Here we present an electrochemical method by means of a fuel cell that removes sulfide while producing energy. A lab scale fuel cell was operated at ambient temperature and neutral pH, which was capable of removing aqueous sulfide continuously for 2 months at a rate of 0.62 ± 0.1 kg S m−3 d−1 of net anodic compartment (NAC) (0.28 ± 0.05 kg S m−3 d−1 of total anodic compartment, TAC). During continuous operation, on average, the power generated was 12 ± 2 W m−3 NAC (5 ± 1 W m−3 TAC), with a maximum capacity of the cell of 166 W m−3 NAC (74 W m−3 TAC). Potassium ferricyanide was used as cathodic electron acceptor. Elemental sulfur was identified as the predominant final oxidation product that was deposited on the anode. In this abiotic fuel cell, the sulfide oxidation rate was not diminished by the presence of an organic electron donor (acetate) during batch experiments while the acetate concentration remained unchanged. This is particularly important for selective sulfide removal from wastewater where organics are essential for downstream nutrient removal. Elemental sulfur deposited on the anode appeared to limit the operation of the fuel cell after 3 months of operation, necessitating periodic removal of the accumulated sulfur from the electrode.  相似文献   

15.
The effect of post-digestion temperature on a lab-scale serial continuous-flow stirred tank reactor (CSTR) system performance was investigated. The system consisted of a main reactor operated at 55 °C with hydraulic retention time (HRT) of 15 days followed by post-digestion reactors with HRT of 5.3 days. Three post-digestion temperatures (55 °C, 37 °C and 15 °C) were compared in terms of biogas production, process stability, microbial community and methanogenic activity. The results showed that the post-digesters operated at 55 °C, 37 °C and 15 °C gave extra biogas production of 11.7%, 8.4% and 1.2%, respectively. The post-digester operated at 55 °C had the highest biogas production and was the most stable in terms of low VFA concentrations. The specific methanogenic activity tests revealed that the main reactor and the post-digester operated at 55 °C and 37 °C had very active acidogens and methanogens. In contrast, very low methanogenic activity was observed at 15 °C.  相似文献   

16.
Synthetic musks (SMs), as a group of the widely used fragrance ingredients, are not completely removed from the wastewater treatment plant (WWTP). Although the increasing concerns have been focused on the removal and fate of these compounds in WWTP, little is known related to SMs removal mechanism with the seasonal variation, especially, the detail removal contribution of bioreactor in different seasons. In this study, in order to clearly understand the complicated behavior of SMs during wastewater treatment process, we determined four synthetic musks, galaxolide (HHCB), tonalide (AHTN), musk xylene (MX) and musk ketone (MK) in a domestic WWTP in Shanghai, China during four seasons (with the particular interests on the seasonal contribution of individual bio-unit). Operating temperature combined other seasonal elements (e.g. illumination, biomass and bioactivity) render influences on the elimination of SMs in different treatment units, particular in the bioreactor. The results showed that the higher operating temperature would benefit the elimination of SMs. The overall mass loss of total SMs during the wastewater treatment process were as high as 131.7 g d− 1 (28.3 g d− 1 loss in bioreactor) in summer followed by 109.1 g d− 1 (29.8 g d− 1 loss in bioreactor) in fall. Contributions of individual bio-unit (anaerobic, anoxic and oxic unit) to the total SMs elimination in bioreactor were seasonal fluctuated, e.g. the anoxic unit made a remarkable contribution (almost 90%) in fall, whereas there were nearly equivalent contributions of three bio-units in summer.  相似文献   

17.
Biological ammoniacal-nitrogen (NH4+-N) and organic carbon (TOC) treatment was investigated in replicated mesoscale attached microbial film trickling filters, treating strong and weak strength landfill leachates in batch mode at temperatures of 3, 10, 15 and 30 °C. Comparing leachates, rates of NH4+-N reduction (0.126-0.159 g m− 2 d− 1) were predominantly unaffected by leachate characteristics; there were significant differences in TOC rates (0.072-0.194 g m− 2 d− 1) but no trend relating to leachate strength. Rates of total oxidised nitrogen (TON) accumulation (0.012-0.144 g m− 2 d− 1) were slower for strong leachates. Comparing temperatures, treatment rates varied between 0.029-0.319 g NH4+-N m− 2 d− 1 and 0.033-0.251 g C m− 2 d− 1 generally increasing with rising temperatures; rates at 3 °C were 9 and 13% of those at 30 °C for NH4+-N and TOC respectively. For the weak leachates (NH4+-N < 140 mg l− 1) complete oxidation of NH4+-N was achieved. For the strong leachates (NH4+-N 883-1150 mg l− 1) a biphasic treatment response resulted in NH4+-N removal efficiencies of between 68 and 88% and for one leachate no direct transformation of NH4+-N to TON in bulk leachate. The temporal decoupling of NH4+-N oxidation and TON accumulation in this leachate could not be fully explained by denitrification, volatilisation or anammox, suggesting temporary storage of N within the treatment system. This study demonstrates that passive aeration trickling filters can treat well-buffered high NH4+-N strength landfill leachates under a range of temperatures and that leachate strength has no effect on initial NH4+-N treatment rates. Whether this approach is a practicable option depends on a range of site specific factors.  相似文献   

18.
Four anaerobic sequencing batch reactors (ASBRs) were operated during a period of 988 days to evaluate the effect of temperature, ammonia, and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During period 1 (day 0-378), the methane yield was 0.31 L CH4/g volatile solids (VS) for all digesters (with no statistical differences among them) at a temperature and total ammonium-N levels of 25 °C and ∼1200 mg NH4+-N/L, respectively. During period 2 (day 379-745), the methane yield at 25 °C decreased by 45% when total ammonium-N and ammonia-N were increased in two of the four ASBRs to levels >4000 mg NH4+-N/L and >80 mg NH3-N/L, respectively. During period 3 (day 746-988), this relative inhibition was reduced from 45% to 13% compared to the low-ammonia control reactors when the operating temperature was increased from 25 °C to 35 °C (while the free ammonia levels increased from ∼100 to ∼250 mg NH3-N/L). The 10 °C increase in temperature doubled the rate constant for methanogenesis, which overwhelmed the elevated toxicity effects caused by the increasing concentration of free ammonia. Thus, the farmer/operator may alleviate ammonia toxicity by increasing the operating temperature within the mesophilic range. We extrapolated our data to correlate temperature, ammonia, and methane yield and to hypothesize that the difference between high- and low-ammonia reactors is negligible at the optimum mesophilic temperature of 38 °C.  相似文献   

19.
Anaerobic digestion in the psychrophilic (< 20 degrees C) or sub-mesophilic temperature range has recently been proven as an effective treatment option for the mineralization of a wide variety of problematic wastewaters. In this study, an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor was seeded with a full-scale, mesophilic sludge and employed to evaluate the long-term operational potential, and underlying microbial ecology, of this approach for the treatment of a medium-strength (5 g chemical oxygen demand [COD] l(-1)), synthetic, volatile fatty acid-based wastewater. Throughout the trial period of 625 days, extended intervals of consistently stable and efficient wastewater treatment were sustained. These results were highlighted by a short start-up period (21 d), low hydraulic retention times (4.88h), high organic (up to 24.64kg CODm(-3)d(-1)), and volumetric loading rates (up to 4.92 m3 m(-3) d(-1)). A stable, well-settling granular sludge bed was maintained in the bioreactor for the majority of the trial; however, reduced treatment efficiency and biomass washout were observed at an imposed OLR of 36.96 kg COD m(-3) d(-1). The microbial biomass in the bioreactor was investigated using maximum specific methanogenic activity assays and polymerase chain reaction-denaturing gradient gel electrophoresis. A temporal succession of both the bacterial and archaeal populations was noted during the trial, compared to the seed sludge, in response to bioreactor operation at lower temperatures, loading rate increases and to VFA accumulation in the bioreactor. During the trial, an increased contribution of hydrogenotrophic methanogenesis as a pathway of methane production was observed, along with the overall emergence of a highly active psychrotolerent-though still mesophilic biomass.  相似文献   

20.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号