首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrification and subsequent autotrophic denitrification were carried out in MBfR with pure oxygen and hydrogen supply, respectively, in order to remove nitrogen without the use of heterotrophic bacteria. Excessive biomass accumulation is typically the major cause of system failure of MBfR. No biomass accumulation was detected in the nitrification reactor as low-level discharge of solids from the system balanced out biomass generation. The average specific nitrification rate during 250 days of operation was 1.88 g N/m2 d. The subsequent denitrification reactor, however, experienced decline of performance due to excessive biofilm growth, which prompted the implementation of periodic nitrogen sparging for biofilm control. The average specific denitrification rate increased from 1.50 g N/m2 d to 1.92 g N/m2 d with nitrogen sparging, over 190 days thus demonstrating the feasibility of stable long-term operation. Effluent suspended solids increased immediately following sparging: from an average of 2.5 mg/L to 12.7 mg/L. This periodic solids loss was found unavoidable, considering the theoretical biomass generation rates at the loadings used. A solids mass balance between the accumulating and scoured biomass was established based on the analysis of the effluent volatile solids data. Biofilm thickness was maintained at an average of 270 μm by the gas sparging biofilm control. It was concluded that biomass accumulation and scouring can be balanced in autotrophic denitrification and that long-term stable operation can be maintained.  相似文献   

2.
Ziv-El MC  Rittmann BE 《Water research》2009,43(1):173-10162
To evaluate the simultaneous reduction kinetics of the oxidized compounds, we treated nitrate-contaminated groundwater (∼9.4 mg-N/L) containing low concentrations of perchlorate (∼12.5 μg/L) and saturated with dissolved oxygen (∼8 mg/L) in a hydrogen-based membrane biofilm reactor (MBfR). We systematically increased the hydrogen availability and simultaneously varied the surface loading of the oxidized compounds on the biofilm in order to provide a comprehensive, quantitative data set with which to evaluate the relationship between electron donor (H2) availability, surface loading of the electron acceptors (oxidized compounds), and simultaneous bioreduction of the electron acceptors. Increasing the H2 pressure delivered more H2 gas, and the total H2 flux increased linearly from ∼0.04 mg/cm2-d for 0.5 psig (0.034 atm) to 0.13 mg/cm2-d for 9.5 psig (0.65 atm). This increased rate of H2 delivery allowed for continued reduction of the acceptors as their surface loading increased. The electron acceptors had a clear hydrogen-utilization order when the availability of hydrogen was limited: oxygen, nitrate, nitrite, and then perchlorate. Spiking the influent with perchlorate or nitrate allowed us to identify the maximum surface loadings that still achieved more than 99.5% reduction of both oxidized contaminants: 0.21 mg NO3-N/cm2-d and 3.4 μg ClO4/cm2-d. Both maximum values appear to be controlled by factors other than hydrogen availability.  相似文献   

3.
A novel nitritation method based on the addition of inorganic carbon (IC) was verified using an airlift-fluidized bed reactor packed with sponge cubes. A continuous-treatment experiment demonstrated that the type of nitrification—nitrite or nitrate accumulation—could be controlled by the addition of different alkalinity sources (NaHCO3 or NaOH, respectively). The maximum rate of ammonia oxidation at 30 °C was 2.47 kg-N/(m3 d), with nitrate formation of less than 0.5% of the converted ammonia. Nitrite accumulation of over 90% was maintained stably over 250 days at 30 °C and was achieved even at 19 °C. Qualitative and quantitative shifts of nitrifying bacteria in the biofilm were monitored by real-time PCR and T-RFLP analysis. Ammonia-oxidizing bacteria (AOB) were dominant but nitrite-oxidizing bacteria (NOB) were eliminated in the reactor when NaHCO3 was used as the alkalinity source. From the kinetic data, we inferred that high IC concentrations drive stable nitritation by promoting a higher growth rate for AOB than for NOB.  相似文献   

4.
This study exploited the concept of the minimum/maximum substrate concentrations (MSC values) for identifying proper start-up conditions and achieving stable and low effluent total ammonium nitrogen (TAN) concentrations in suspended-growth short-cut biological nitrogen removal (SSBNR). Calculations based on the MSC concept indicated that SDmax, the TAN concentration above which ammonium-oxidizing bacteria (AOB) are washed out, was around 450 mgTAN/L at the given operating conditions of 2 mg/L of dissolved oxygen and pH 8, while nitrite-oxidizing bacteria (NOB) should be washed out at around 40 mgTAN/L. Therefore, the experimental research was focused on the optimal TAN-concentration range for SSBNR, between 50 and 100 mg/L. Experimental results showed that a nitrification reactor with initial TAN concentration above 450 mg/L did not give a successful start-up. However, two days of starvation, which decreased the TAN concentration in the reactor to 95 mg/L, stabilized the reaction quickly, and stable SSBNR was sustained thereafter with 80 mgTAN/L and 98% nitrite accumulation in the reactor. During stable SSBNR, the removal ratio of chemical oxygen demand per nitrite nitrogen (ΔCOD/ΔNO2-N) for denitrification was 1.94 gCOD/gN, which is around 55% of that required for nitrate denitrification. Based on a clone library, Nitrosomonas occupied 14% of the total cells, while the sum of Nitrobacter and Nitrospira was less than the detection cut-off of 2%, confirming the NOB were washed out during SSBNR. A spiking test that doubled the influent ammonium loading caused the TAN concentration in the reactor to reach washout for AOB, which lasted until the loading was reduced. Thus, a loading increase should be controlled carefully such that the system does not exceed the washout range for AOB.  相似文献   

5.
Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas.  相似文献   

6.
This study investigates the anaerobic treatment of an industrial wastewater from a Fischer-Tropsch (FT) process in a continuous-flow packed-bed biofilm reactor operated under mesophilic conditions (35 °C). The considered synthetic wastewater has an overall chemical oxygen demand (COD) concentration of around 28 g/L, mainly due to alcohols. A gradual increase of the organic load rate (OLR), from 3.4 gCOD/L/d up to 20 gCOD/L/d, was adopted in order to overcome potential inhibitory effects due to long-chain alcohols (>C6). At the highest applied OLR (i.e., 20 gCOD/L/d) and a hydraulic retention time of 1.4 d, the COD removal was 96% with nearly complete conversion of the removed COD into methane. By considering a potential of 200 tCOD/d to be treated, this would correspond to a net production of electric energy of about 8 × 107 kWh/year.During stable reactor operation, a COD balance and batch tests showed that about 80% of the converted COD was directly metabolized through H2 and acetate-releasing reactions, which proceeded in close syntrophic cooperation with hydrogenotrophic and acetoclastic methanogenesis (contributing to about 33% and 54% of overall methane production, respectively). Finally, energetic considerations indicated that propionic acid oxidation was the metabolic conversion step most dependent on the syntrophic partnership of hydrogenotrophic methanogens and accordingly the most susceptible to variations of the applied OLR or toxicity effects.  相似文献   

7.
厌氧折流池/生物滤池/人工湿地处理扎染废水   总被引:1,自引:1,他引:0  
采用厌氧折流板反应器/生物滤池-接触氧化一体化装置/垂直流人工湿地等组合工艺处理扎染废水.厌氧折流板反应池、好氧一体化装置的设计容积负荷分别为0.50 kgCOD/(m~3·d)和0.30 kgCOD/(m~3·d).运行结果表明,当进水COD、BOD_5、NH~+_4-N、SS、色度平均值分别为556 mg/L、196 mg/L、19.3 mg/L、353 mg/L、314倍时,出水相应指标分别为43 mg/L、11.5 mg/L、3.1 mg/L、13.7 mg/L、19倍,系统运行稳定,可实现扎染废水长期稳定达标排放.  相似文献   

8.
Aerobic granulation of activated sludge was achieved in a pilot-scale sequencing batch reactor (SBR) for the treatment of low-strength municipal wastewater (<200 mg L−1 of COD, chemical oxygen demand). The volume exchange ratio and settling time of an SBR were found to be two key factors in the granulation of activated sludge grown on the low-strength municipal wastewater. After operation of 300 days, the mixed liquor suspended solids (MLSS) concentration in the SBR reached 9.5 g L−1 and consisted of approximate 85% granular sludge. The average total COD removal efficiency kept at 90% and NH4+-N was almost completely depleted (∼95%) after the formation of aerobic granules. The granules (with a diameter over 0.212 mm) had a diameter ranging from 0.2 to 0.8 mm and had good settling ability with a settling velocity of 18-40 m h−1. Three bacterial morphologies of rod, coccus and filament coexisted in the granules. Mathematical modeling was performed to get insight into this pilot-scale granule-based reactor. The modified IWA activated sludge model No 3 (ASM3) was able to adequately describe the pilot-scale SBR dynamics during its cyclic operation.  相似文献   

9.
The effect of chemical oxygen demand/sulfate (COD/SO42−) ratio on fermentative hydrogen production using enriched mixed microflora has been studied. The chemostat system maintained with a substrate (glucose) concentration of 15 g COD L−1 exhibited stable H2 production at inlet sulfate concentrations of 0-20 g L−1 during 282 days. The tested COD/SO42− ratios ranged from 150 to 0.75 (with control) at pH 5.5 with hydraulic retention time (HRT) of 24, 12 and 6 h. The hydrogen production at HRT 6 h and pH 5.5 was not influenced by decreasing the COD/SO42− ratio from 150 to 15 (with control) followed by noticeable increase at COD/SO42− ratios of 5 and 3, but it was slightly decreased when the COD/SO42− ratio further decreased to 1.5 and 0.75. These results indicate that high sulfate concentrations (up to 20,000 mg L−1) would not interfere with hydrogen production under the investigated experimental conditions. Maximum hydrogen production was 2.95, 4.60 and 9.40 L day−1 with hydrogen yields of 2.0, 1.8 and 1.6 mol H2 mol−1 glucose at HRTs of 24, 12 and 6 h, respectively. The volatile fatty acid (VFA) fraction produced during the reaction was in the order of butyrate > acetate > ethanol > propionate in all experiments. Fluorescence In Situ Hybridization (FISH) analysis indicated the presence of Clostridium spp., Clostridium butyricum, Clostridium perfringens and Ruminococcus flavefaciens as hydrogen producing bacteria (HPB) and absence of sulfate reducing bacteria (SRB) in our study.  相似文献   

10.
Weiwei Ben  Xun Pan  Meixue Chen 《Water research》2009,43(17):4392-4402
The large-scale application of veterinary antibiotics in livestock industry makes swine wastewater an important source of antibiotics pollution. This work investigated the degradation of six selected antibiotics, including five sulfonamides and one macrolide, by Fenton's reagent in swine wastewater pretreated with sequencing batch reactor (SBR). The dosing mode and practical dosage of Fenton's reagent were optimized to achieve an effective removal of antibiotics while save the treatment cost. The effects of initial pH, chemical oxygen demand (COD) and suspended solids (SS) of the SBR effluent on antibiotics degradation were examined. The results indicate that the optimal conditions for Fenton's reagent with respect to practical application were as follows: batch dosing mode, 1.5:1 molar ratio of [H2O2]/[Fe2+], initial pH 5.0. Under the optimal conditions, Fenton's reagent could effectively degrade all the selected antibiotics and was resistant to the variations in the background COD (0-419 mg/L) and SS (0-250 mg/L) of the SBR effluent. Besides, Fenton's reagent helped to not only remove total organic carbon (TOC), heavy metals (As, Cu and Pb) and total phosphorus (TP), but also inactivate bacteria and reduce wastewater toxicity. This work demonstrates that the integrated process combining SBR with Fenton's reagent could provide comprehensive treatment to swine wastewater.  相似文献   

11.
Several sources of bacterial inocula were tested for their ability to reduce nitrate and perchlorate in synthetic ion-exchange spent brine (30-45 g/L) using a hydrogen-based membrane biofilm reactor (MBfR). Nitrate and perchlorate removal fluxes reached as high as 5.4 g N m−2 d−1 and 5.0 g ClO4 m−2 d−1, respectively, and these values are similar to values obtained with freshwater MBfRs. Nitrate and perchlorate removal fluxes decreased with increasing salinity. The nitrate fluxes were roughly first order in H2 pressure, but roughly zero-order with nitrate concentration. Perchlorate reduction rates were higher with lower nitrate loadings, compared to high nitrate loadings; this is a sign of competition for H2. Nitrate and perchlorate reduction rates depended strongly on the inoculum. An inoculum that was well acclimated (years) to nitrate and perchlorate gave markedly faster removal kinetics than cultures that were acclimated for only a few months. These results underscore that the most successful MBfR bioreduction of nitrate and perchlorate in ion-exchange brine demands a well-acclimated inoculum and sufficient hydrogen availability.  相似文献   

12.
A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O2, NH3) co-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (Ki) and maximum specific growth rate of ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were the determinant parameters in nitrogen conversion simulations. The modeling simulations demonstrated that Ki had stronger effects on nitrogen conversion at lower (0-10 m d−1) than at the higher values (>10 m d−1). The experimental results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO < 0.1 mg L−1) and high pH (8.0-8.3), nitrite accumulation was triggered more significantly in co-diffusion than counter-diffusion biofilms by increasing the applied ammonia loading from 0.21 to 0.78 g NH4+-N L−1 d−1. The co- and counter-diffusion biofilms displayed very different spatial structures and population distributions after 120 days of operation. AOB were dominant throughout the biofilm depth in co-diffusion biofilms, while the counter-diffusion biofilms presented a stratified structure with an abundance of AOB and NOB at the base and putative heterotrophs at the surface of the biofilm, respectively.  相似文献   

13.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。  相似文献   

14.
Biological removal of phenol from strong wastewaters using a novel MSBR   总被引:2,自引:0,他引:2  
In this study, the performance of a moving-bed sequencing batch reactor (MSBR) that removes phenol from wastewater is presented. The effects of phenol concentration (50-3325 mg L−1), filling time (0-4 h) and aerating time (4-18 h) on the performance of the MSBR are given in terms of phenol and COD removal efficiencies. Moreover, the effect of the moving media on the overall performance of the reactor is also determined. The reactor can completely remove phenol and COD at inlet concentrations up to 3000 mg phenol L−1 (6780 mg COD L−1), which was the inhibition concentration, and with a 24-h cycle time. The filling time range tested here did not significantly affect phenol or COD removal. The optimum hydraulic retention time (HRT) for the MSBR is 40 h and the critical phenol loading rate is 83.4 g phenol m−3 h−1, which gives a phenol removal efficiency of 99%. The reactor can also withstand shock loads from slug feeding. The moving bed contribution to phenol and COD removal efficiencies was up to 28.1 and 34.7%, respectively, at the phenol loading rate of 83.4 g m−3 h−1. The findings of this investigation suggest that MSBR can be a robust and promising process for effectively treating wastewaters containing inhibitor or recalcitrant compounds in industrial settings.  相似文献   

15.
16.
The electrochemical treatment of olive mill wastewaters (OMW) over boron-doped diamond (BDD) electrodes was investigated. A factorial design methodology was implemented to evaluate the statistically important operating parameters, amongst initial COD load (1000-5000 mg/L), treatment time (1-4 h), current intensity (10-20 A), initial pH (4-6) and the use of 500 mg/L H2O2 as an additional oxidant, on treatment efficiency; the latter was assessed in terms of COD, phenols, aromatics and color removal. Of the five parameters tested, the first two had a considerable effect on COD removal. Hence, analysis was repeated at more intense conditions, i.e. initial COD values up to 10,000 mg/L and reaction times up to 7 h and a simple model was developed and validated to predict COD evolution profiles. The model suggests that the rate of COD degradation is zero order regarding its concentration and agrees well with an electrochemical model for the anodic oxidation of organics over BDD developed elsewhere. The treatability of the undiluted effluent (40,000 mg/L COD) was tested at 20 A for 15 h yielding 19% COD and 36% phenols' removal respectively with a specific energy consumption of 96 kW h/kg COD removed. Aerobic biodegradability and ecotoxicity assays were also performed to assess the respective effects of electrochemical treatment.  相似文献   

17.
The stability and performance of a two-stage anaerobic membrane process was investigated at different organic loading rates (OLRs) and Hydraulic Retention Times (HRTs) over 200 days. The Hydrolytic Reactor (HR) was fed with the Organic Fraction of Municipal Solid Waste (OFMSW), while the leachate from the HR was fed continuously to two Submerged Anaerobic Membrane Bioreactors (SAMBR1 and 2). The Total COD (TCOD) of the leachate varied over a wide range, typically between 4000 and 26,000 mg/L while the Soluble COD (SCOD) in the permeate was in the range 400-600 mg/L, achieving a COD removal greater than 90% at a HRT of 1.6-2.3 days in SAMBR1. The operation was not sustainable below this HRT due to a membrane flux limitation at 0.5-0.8 L/m2 h (LMH), which was linked to the increasing MLTSS. SCOD in the recycled permeate did not build up indicating a slow degradation of recalcitrants over time. SAMBR2 was run in parallel with SAMBR1 but its permeate was treated aerobically in an Aerobic Membrane Bioreactor (AMBR). The AMBR acted as a COD-polishing and ammonia removal step. About 26% of the recalcitrant SCOD from SAMBR2 could be aerobically degraded in the AMBR. In addition, 97.7 % of the ammonia-nitrogen was converted to nitrate in the AMBR at a maximum nitrogen-loading rate of 0.18 kg NH4+-N/m3 day. GC-MS analysis was performed on the reactor effluents to determine their composition and what compounds were recalcitrant.  相似文献   

18.
A horizontal flow biofilm reactor (HFBR) designed for the treatment of synthetic wastewater (SWW) was studied to examine the spatial distribution and dynamics of nitrogen transformation processes. Detailed analyses of bulk water and biomass samples, giving substrate and proportions of ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) gradients in the HFBR, were carried out using chemical analyses, sensor rate measurements and molecular techniques. Based on these results, proposals for the design of HFBR systems are presented.The HFBR comprised a stack of 60 polystyrene sheets with 10-mm deep frustums. SWW was intermittently dosed at two points, Sheets 1 and 38, in a 2 to 1 volume ratio respectively. Removals of 85.7% COD, 97.4% 5-day biochemical oxygen demand (BOD5) and 61.7% TN were recorded during the study.In the nitrification zones of the HFBR, which were separated by a step-feed zone, little variation in nitrification activity was found, despite decreasing in situ ammonia concentrations. The results further indicate significant simultaneous nitrification and denitrification (SND) activity in the nitrifying zones of the HFBR. Sensor measurements showed a linear increase in potential nitrification rates at temperatures between 7 and 16 °C, and similar rates of nitrification were measured at concentrations between 1 and 20 mg NH4-N/l. These results can be used to optimise HFBR reactor design. The HFBR technology could provide an alternative, low maintenance, economically efficient system for carbon and nitrogen removal for low flow wastewater discharges.  相似文献   

19.
Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3 was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p > 0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems.  相似文献   

20.
Zhihua Liang 《Water research》2010,44(18):5432-5438
The growing release of nanosilver into sewage systems has increased the concerns on the potential adverse impacts of silver nanoparticles (AgNPs) in wastewater treatment plants. The inhibitory effects of nanosilver on wastewater treatment and the response of activated sludge bacteria to the shock loading of AgNPs were evaluated in a Modified Ludzack-Ettinger (MLE) activated sludge treatment system. Before shock-loading experiments, batch extant respirometric assays determined that at 1 mg/L of total Ag, nitrification inhibitions by AgNPs (average size = 1-29 nm) and Ag+ ions were 41.4% and 13.5%, respectively, indicating that nanosilver was more toxic to nitrifying bacteria in activated sludge than silver ions. After a 12-h period of nanosilver shock loading to reach a final peak silver concentration of 0.75 mg/L in the MLE system, the total silver concentration in the mixed liquor decreased exponentially. A continuous flow-through model predicted that the silver in the activated sludge system would be washed out 25 days after the shock loading. Meanwhile, a prolonged period of nitrification inhibition (>1 month, the highest degree of inhibition = 46.5%) and increase of ammonia/nitrite concentration in wastewater effluent were observed. However, nanosilver exposure did not affect the growth of heterotrophs responsible for organic matter removal. Microbial community structure analysis indicated that the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria, Nitrospira, had experienced population decrease while Nitrobacter was washed out after the shock loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号