首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixed-culture of bacteria collected from a wastewater treatment plant in Brits, North-West Province (South Africa) biocatalytically reduced Cr(VI) at much higher concentrations than previously observed in cultures isolated in North America. Cr(VI) reduction rate up to 8 times higher than the rate in previous cultures was achieved by the Brits culture under aerobic conditions. Near complete Cr(VI) reduction was observed in batches under initial concentrations up to 200 mg Cr(VI)/L after incubation for 65 h in aerobic cultures. Under anaerobic conditions up to 150 mg Cr(VI)/L was completely removed after incubating for 130-155 h. In the previous cultures, complete removal was only achieved in cultures at an initial Cr(VI) concentration lower than 30 mg/L after incubation for 96-110 h. Consortium cultures were characterised using 16S rRNA partial sequence analysis. Results showed that the Gram-positive Bacillus genera predominated under aerobic conditions with a small composition of the Gram-negative Microbacterium sp. More biodiversity was observed in anaerobic cultures with the marked appearance of Enterococcus, Arthrobacter, Paenibacillus and Oceanobacillus species. Experiments run on purified individual species did not achieve the same level of Cr(VI) reduction as observed in the original consortium from sludge indicating possible existence of interspecies interactions necessary for optimum Cr(VI) reduction. All Cr(VI) reduced was accounted for as Cr(III) with a small error range (2-6%).  相似文献   

2.
The adsorption of saxitoxin to Na- and Ca-montmorillonite, kaolin (crystalline and amorphous), kaolinite, Bread and Butter Creek sediment (an estuarine tidal creek), Gulf of Mexico sediment, and Santa Barbara Basin sediment in deionized water and 32‰ salinity simulated seawater (Instant Ocean™) is reported. Adsorption was partially reversible for all cases and best described using a Freundlich isotherm. The corresponding Freundlich constants (KF) ranged from 8.83 × 103 μmol/kg to 6.76 × 104 μmol/kg for freshwater and 4.73 × 103 μmol/kg-1.11 × 104 μmol/kg for seawater. There is a positive linear correlation seen between the KF values and the cation-exchange capacity of the adsorbents. The release of saxitoxin from previously equilibrated adsorbents was determined in freshwater (0-18%) and seawater (4-53%).  相似文献   

3.
《Water research》1996,30(7):1736-1744
Bacterial strains isolated from dye-contaminated sludge decolorized a toxic azo dye, namely, methyl red (MR). Klebsiella pneumoniae RS-13 was selected because of its better abilities to completely decolorize and degrade MR under aerobic conditions. Effects of physico-chemical parameters, such as: temperature and aeration, concentrations of glucose, ethanol, ammonium sulfate and pH of the culture medium on the MR degradation by the bacterium and a previously isolated aerobic MR-degrading bacterium, Acetobacter liquefaciens S-1, were determined. K. pneumoniae RS-13 had higher MR degradation ability than A. liquefaciens S-1. Under optimal conditions, K. pneumoniae RS-13 completely decolorized and degraded 100 mg l−1 of MR in cultural medium. The high MR degradation ability and low nutrient and environmental requirements of K. pneumoniae RS-13 enable this bacterium to be used in the treatment of industrial effluent containing azo dyes.  相似文献   

4.
Biological, aerobic degradation of an azo dye and of the resultant, recalcitrant, aromatic amines in a constructed wetland (CW) was demonstrated for the first time. A vertical-flow CW, planted with Phragmites sp. was fed with 127 mg l−1 of acid orange 7 (AO7) at hydraulic loads of 28, 40, 53 and 108 l m−2day−1. Color removal efficiencies of up to 99% clearly demonstrate cleavage of the azo bond, also confirmed by the similar AO7 removal and SO42− release rates revealing that adsorption onto the matrix was constant. The positive redox potential at the outlet demonstrates that aerobic conditions were present. Chemical oxygen demand and total organic carbon removal efficiencies of up to 93% were also indicative of AO7 mineralization. The degradation of sulfanilic acid was confirmed by the presence of NO3, SO42− and secondary metabolites, which suggest at least two degradation pathways leading to a common compound, 3-oxoadipate.  相似文献   

5.
Temperature effects on glycogen accumulating organisms   总被引:3,自引:0,他引:3  
Glycogen accumulating organisms (GAO) compete for substrate with polyphosphate-accumulating organisms (PAO), which are the microorganisms responsible for the enhanced biological phosphorus removal (EBPR) in activated sludge wastewater treatment systems. This can lead to the deterioration of the EBPR process. In this paper, the long-term temperature effects on the anaerobic and aerobic stoichiometry and conversion rates on adapted enriched cultures of Competibacter (a known GAO) were evaluated from 10 to 40 °C. The anaerobic stoichiometry of Competibacter was constant from 15 to 35 °C, whereas the aerobic stoichiometry was insensitive to temperature changes from 10 to 30 °C. At 10 °C, likely due to the inhibition of the anaerobic conversions of Competibacter, a switch in the dominant bacterial population to an enriched Accumulibacter culture (a known PAO) was observed. At higher temperatures (35 and 40 °C), the aerobic processes limited the growth of Competibacter. Due to the inhibition or different steady-state (equilibrium) conditions reached at long-term by the metabolic conversions, the short- and long-term temperature dependencies of the anaerobic acetate uptake rate of Competibacter differed considerably between each other. Temperature coefficients for the various metabolic processes are derived, which can be used in activated sludge modeling. Like for PAO cultures: (i) the GAO metabolism appears oriented at restoring storage pools rather than fast microbial growth, and (ii) the aerobic growth rate of GAO seems to be a result of the difference between PHA consumption and PHA utilization for glycogen synthesis and maintenance. It appears that the proliferation of Competibacter in EBPR systems could be suppressed by adjusting the aerobic solids retention time while, aiming at obtaining highly enriched PAO cultures, EBPR lab-scale reactors could be operated at low temperature (e.g. 10 °C).  相似文献   

6.
Degradation of the sulfonamide sulfamethazine (SMZ) by the white-rot fungus Trametes versicolor was assessed. Elimination was achieved to nearly undetectable levels after 20 h in liquid medium when SMZ was added at 9 mg L− 1. Experiments with purified laccase and laccase-mediators resulted in almost complete removal. On the other hand, inhibition of SMZ degradation was observed when piperonilbutoxide, a cytochrome P450-inhibitor, was added to the fungal cultures. UPLC-QqTOF-MS analysis allowed the identification and confirmation of 4 different SMZ degradation intermediates produced by fungal cultures or purified laccase: desulfo-SMZ, N4-formyl-SMZ, N4-hydroxy-SMZ and desamino-SMZ; nonetheless SMZ mineralization was not demonstrated with the isotopically labeled sulfamethazine-phenyl-13C6 after 7 days. Inoculation of T. versicolor to sterilized sewage sludge in solid-phase systems showed complete elimination of SMZ and also of other sulfonamides (sulfapyridine, sulfathiazole) at real environmental concentrations, making this fungus an interesting candidate for further remediation research.  相似文献   

7.
This work was designed to determine chemically inert mercury-selenium (Hg-Se) compounds formed in a culture of Pseudomonas fluorescens exposed to Hg2+ and SeIV (selenite). To isolate these compounds, different digestion methods were studied and sodium dodecyl sulfate (SDS) lysis was selected. The Hg0 and non-reactive Hg were determined in two series of cultures containing 0.0-6.00 μg L−1 SeIV (0.0-76.0 μmol L−1) in combination with low 5.00 μg L−1 (0.025 μmol L−1) or high 100 μg L−1 (0.500 μmol L−1) Hg2+. It was found that Hg0 formed in the culture decreased with the increase of initial SeIV, while the non-reactive Hg increased with the SeIV. In cultures with low initial [Hg2+], a median SeIV (2.0 μg L−1 or 25.3 μmol L−1) resulted in about 70% of the added Hg2+ sequestered as non-reactive Hg, and in culture with high initial Hg2+, about 40% was sequestered. P. fluorescens was proved to be indispensible for the formation of the non-reactive Hg-Se compounds. The Hg:Se molar ratio in the non-reactive Hg-Se compounds was close to 1, suggesting the existence of mercuric selenide in cells. Mechanisms for the formation of the non-reactive Hg-Se compounds are proposed.  相似文献   

8.
Concern is growing over contamination of the environment with pharmaceuticals because of their widespread use and incomplete removal during wastewater treatment, where microorganisms drive the key processes. The influence of pharmaceuticals on bacterial community structure in activated sludge was assessed in small-scale wastewater treatment bioreactors containing different concentrations (5, 50, 200 and 500 μg L−1) of several commonly used pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). T-RFLP analyses of the bacterial 16S rRNA genes indicated a minor but consistent shift in the bacterial community structure in the bioreactor R50 supplied with pharmaceuticals at a concentration of 50 μg L−1, compared to the control reactor R0, which was operated without addition of pharmaceuticals. In the reactors operated with higher concentrations of pharmaceuticals, a greater structural divergence was observed. Bacterial community composition was further investigated by preparation of two clone libraries of bacterial 16S rRNA genes from reactors R0 and R50. Most clones in both libraries belonged to the Betaproteobacteria, among which Thauera, Sphaerotilus, Ideonella and Acidovorax-related spp. dominated. Nitrite-oxidizing bacteria of the genus Nitrospira sp., which are key organisms for the second stage of nitrification in wastewater treatment plants, were found only in the clone library of the reactor without pharmaceuticals. In addition, diversity indices were calculated for the two clone libraries, indicating a reduced diversity of activated sludge bacterial community in the reactor supplied with 50 μg L−1 of each of selected pharmaceuticals.  相似文献   

9.
This study was undertaken to develop molecular tools to assess water quality using diatoms as the biological model. Molecular approaches were designed following the development of a rapid and easy RNA extraction method suited to diatoms and the sequencing of genes involved in mitochondrial and photosystem metabolism. Secondly the impact of cadmium was evaluated at the genetic level by q-PCR on 9 genes of interest after exposure of Eolimna minima diatom populations cultured in suspension under controlled laboratory conditions. Their growth kinetics and Cd bioaccumulation were followed.Population growth rates revealed the high impact of Cd at 100 μg/L with total inhibition of growth. These results are linked to the high bioaccumulation values calculated after 14 days of exposure, 57.0 ± 6.3 μg Cd/g dw and 734.1 ± 70 μg Cd/g dw for exposures of 10 and 100 μg Cd/L respectively.Genetic responses revealed the impact of Cd on the mitochondrial metabolism and the chloroplast photosystem of E. minima exposed to 10 and 100 μg Cd/L with induction of cox1, 12S, d1 and psaA after 7 days of exposure for the concentration of 100 μg Cd/L and of nad5, d1 and psaA after 14 days of exposure for both conditions.This is the first reported use of q-PCR for the assessment of toxic pollution on benthic river diatoms. The results obtained presage interesting perspectives, but the techniques developed need to be optimized before the design of new water quality diagnosis tools for use on natural biofilms.  相似文献   

10.
Gradients in phosphorus (P) removal and storage were investigated over 6 years using mesocosms (each consisting of three tanks in series) containing submerged aquatic vegetation (SAV) grown on muck and limerock (LR) substrates. Mean inflow total P concentrations (TP) of 32 μg L−1 were reduced to 15 and 17 μg L−1 in the muck and LR mesocosms, respectively. Mesocosm P loading rates (mean = 1.75 g m−2 year−1) varied widely during the study and were not correlated with outflow TP, which instead varied seasonally with lowest monthly mean values in December and January.The mesocosms initially were stocked with Najas guadalupensis, Ceratophyllum demersum, and Chara zeylanica, but became dominated by C. zeylanica. At the end of the study, highest vegetative biomass (1.1 and 1.4 kg m−2 for muck and LR substrates) and tissue P content (1775 and 1160 mg kg−1) occurred in the first tank in series, and lowest biomass (1.0 and 0.2 kg m−2) and tissue P (147 and 120 mg kg−1) in the third tank. Sediment accretion rates (2.5, 1.9 and 0.9 cm yr−1 on muck substrates), accrued sediment TP (378, 309 and 272 mg kg−1), and porewater soluble reactive P (SRP) concentrations (40, 6 and 4 μg L−1) in the first, second and third tanks, respectively, exhibited a similar decreasing spatial trend. Plant tissue calcium (Ca) near mesocosm inflow (19-30% dry weight) and outflow (23-26%) were not significantly different, and sediment Ca was also similar (range of 24 to 28%) among sequential tanks.Well-defined vegetation and sediment enrichment gradients developed in SAV wetlands operated under low TP conditions. While the mesocosm data did not reflect deterioration in treatment performance over 6 years, accumulation of P-enriched sediments near the inflow could eventually compromise hydraulic storage and P removal effectiveness of these shallow systems.  相似文献   

11.
The effect of salinity on the activity, the composition of nitrifiers and floc characteristics of nitrifying sludge was studied. Non-adapted and adapted (to 10 g NaCl-Cl/L for one year) enriched cultures of nitrifiers were tested in three sequencing batch reactors. Salt was increased gradually with 5 up to 40 g Cl/L.No difference in steady state activity was observed between the adapted and non-adapted sludge. The activities of ammonia and nitrite oxidizers dropped 36% and 11%, respectively, at salt concentrations of 10 g Cl/L. At 40 g Cl/L inhibition reached 95% of salt free activity for ammonia and nitrite oxidizers in both adapted and non-adapted reactors. Nitrosomonas europaea and Nitrobacter sp. (fluorescent in situ hybridization) were the only nitrifiers present at high salt levels. Increased salt concentrations resulted in better settling characteristics of the nitrifying sludge. After 118 days the sludge was brought back to the initial conditions (0 g Cl/L for non-adapted and 10 g Cl/L for adapted). Despite the change in population composition similar kinetics as before the salt stress were observed.  相似文献   

12.
Zhihua Liang 《Water research》2010,44(18):5432-5438
The growing release of nanosilver into sewage systems has increased the concerns on the potential adverse impacts of silver nanoparticles (AgNPs) in wastewater treatment plants. The inhibitory effects of nanosilver on wastewater treatment and the response of activated sludge bacteria to the shock loading of AgNPs were evaluated in a Modified Ludzack-Ettinger (MLE) activated sludge treatment system. Before shock-loading experiments, batch extant respirometric assays determined that at 1 mg/L of total Ag, nitrification inhibitions by AgNPs (average size = 1-29 nm) and Ag+ ions were 41.4% and 13.5%, respectively, indicating that nanosilver was more toxic to nitrifying bacteria in activated sludge than silver ions. After a 12-h period of nanosilver shock loading to reach a final peak silver concentration of 0.75 mg/L in the MLE system, the total silver concentration in the mixed liquor decreased exponentially. A continuous flow-through model predicted that the silver in the activated sludge system would be washed out 25 days after the shock loading. Meanwhile, a prolonged period of nitrification inhibition (>1 month, the highest degree of inhibition = 46.5%) and increase of ammonia/nitrite concentration in wastewater effluent were observed. However, nanosilver exposure did not affect the growth of heterotrophs responsible for organic matter removal. Microbial community structure analysis indicated that the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria, Nitrospira, had experienced population decrease while Nitrobacter was washed out after the shock loading.  相似文献   

13.
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 μg/L) and acetaminophen (7.1-11.4 μg/L), antibiotic ofloxacin (0.89-31.7 μg/L), lipid regulators gemfibrozil (2.0-5.9 μg/L) and bezafibrate (1.9-29.8 μg/L), β-blocker atenolol (0.84-2.8 μg/L), hypoglycaemic agent glibenclamide (0.12-15.9 μg/L) and a diuretic hydrochlorothiazide (2.3-4.8 μg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., β-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated.Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.  相似文献   

14.
Aerobic methanotrophs can contribute to nitrate removal from contaminated waters, wastewaters, or landfill leachate by assimilatory reduction and by producing soluble organics that can be utilized by coexisting denitrifiers. The goal of this study was to investigate nitrate removal and biofilm characteristics in membrane biofilm reactors (MBfR) with various supply regimes of oxygen and methane gas. Three MBfR configurations were developed and they achieved significantly higher nitrate removal efficiencies in terms of methane utilization (values ranging from 0.25 to 0.36 mol N mol−1 CH4) than have previously been observed with suspended cultures. The biofilm characteristics were investigated in two MBfRs with varying modes of oxygen supply. The biofilms differed in structure, but both were dominated by Type I methanotrophs growing close to the membrane surface. Detection of the nitrite reductase genes, nirS and nirK, suggested genetic potential for denitrification was present in the mixed culture biofilms.  相似文献   

15.
Increasing concern about the fate of 17α-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent. A maximum EE2 removal rate of 9.0 μg EE2 g−1 biomass-VSS h−1 was achieved (>94% removal efficiency). Incubation of the heterotrophic bacteria isolated from the NEC did not result in a significant EE2 removal, indicating the importance of nitrification as driving force in the mechanism. Application of the NEC in a MBR to treat a synthetic influent with an EE2 concentration of 83 ng EE2 L−1 resulted in a removal efficiency of 99% (loading rates up to 208 ng EE2 L−1 d−1; membrane flux rate: 6.9 L m−2 h−1). Simultaneously, complete nitrification was achieved at an optimal ammonium influent concentration of 1.0 mg NH4+-N L−1. This minimal NH4+-N input is very advantageous for effluent polishing since the concomitant effluent nitrate concentrations will be low as well and it offers opportunities for the nitrifying MBR as a promising add-on technology for WWTP effluent polishing.  相似文献   

16.
The effluent of 17 sewage treatment works (STW) across Norway, Sweden, Finland, The Netherlands, Belgium, Germany, France and Switzerland was studied for the presence of estradiol (E2), estrone (E1), ethinylestradiol (EE2) and nonylphenol (NP). Treatment processes included primary and chemical treatment only, submerged aerated filter, oxidation ditch, activated sludge (AS) and combined trickling filter with activated sludge. The effluent strength ranged between 87 and 846 L/PE (population equivalent), the total hydraulic retention time (HRT) ranged between 4 and 120 h, sludge retention time (SRT) between 3 and 30 d, and water temperature ranged from 12 to 21 °C. The highest estrogen values were detected in the effluent of the STW which only used primary treatment (13 ng/L E2 and 35 ng/L E1) and on one occasion in one of the STW using the AS system (6.5 ng/L E2, 50.5 ng/L E1, but on three other occasions the concentrations in this STW were at least a factor of 6 lower). For the 16 STW employing secondary treatment E2 was only detected in the effluent of six works during the study period (average 0.7-5.7 ng/L). E1 was detected in the effluent of 13 of the same STW. The median value for E1 for the 16 STW with secondary treatment was 3.0 ng/L. EE2 was only detected in two STW (1.1, <0.8-2.8 ng/L). NP could be detected in the effluent of all 14 STW where this measurement was attempted, with a median of 0.31 μg/L and values ranging from 0.05 to 1.31 μg/L. A comparison of removal performance for E1 was carried out following prediction of the probable influent concentration. A weak but significant (α<5%) correlation between E1 removal and HRT or SRT was observed.  相似文献   

17.

Aims:

Exposure to polycyclic aromatic hydrocarbons (PAH), among the main compounds present in polluted urban air, is of concern for children's health. Childhood exposure to PAH was assessed by urinary monitoring of 1-hydroxypyrene (1-OHP), a pyrene metabolite, investigating its association with exposure to air pollution and other factors related to PAH in air.

Methods:

A group of 174 4-year-old children were recruited and a questionnaire on their indoor and outdoor residential environment was completed by parents. At the same time, environmental measurements of traffic-related air pollution (NO2) were carried out. A urine sample was collected from each child in order to analyze 1-OHP using HPLC with fluorescence detection, correcting for creatinine concentrations. Non-parametric tests and regression analyses were used to identify environmental factors that influence 1-OHP excretion.

Results:

Mean urinary 1-OHP concentration was 0.061 μmol/mol creatinine, ranging from 0.004 to 0.314 μmol/mol. Non-parametric tests and regression analysis showed positive and significant associations (P ≤ 0.05) between 1-OHP and predicted residential exposure to NO2 (which was based on outdoor environmental measurements and geo-statistical analysis), self-reported residential vehicle traffic, passive smoking and cooking appliance. 1-OHP levels tended to be higher among children living in urban areas (0.062 μmol/mol vs. 0.058 μmol/mol for children living in rural areas) but differences were not significant (P = 0.20).

Conclusion:

In Southern Spain, concentrations of urinary 1-OHP were in the lower range of those generally reported for children living in non-polluted areas in Western Europe and the USA. Traffic-related air pollution, passive smoking and cooking appliance influenced urinary 1-OHP level in the children, which should be prevented due to the health consequences of the inadvertent exposure to PAH during development.  相似文献   

18.
A new dye decolourising bacterial strain was isolated from textile wastewater and identified as Bacillus firmus. The study indicated that the bacterium could efficiently decolourise different azo dyes under static culture conditions. Characterisation of the efficiency of azo dye reduction by this isolate using both spectral and HPLC analysis was found to be a function of process parameters which include dye concentration, culture broth pH, incubation temperature, aeration as well as nitrogen source. For decolourisation, the optimal pH and temperature were 7–8 and 20–35°C respectively, while remarkable dye degradation was obtained within 18 h for dye concentrations below 100 mg L?1. With the addition of yeast extract and under optimal conditions, dye reduction was enhanced and complete colour removal was achieved within 12 h. Colour removal was shown to be due to biodegradation rather than adsorption of dyes on bacterial cells. This study confirms the ability of the new dye‐degrading strain, Bacillus firmus, to decolourise and degrade different azo dyes and highlights its high biotechnology potential for the eco‐friendly treatment of textile wastewater when optimal conditions are applied.  相似文献   

19.
Design parameters for sludge reduction in an aquatic worm reactor   总被引:3,自引:0,他引:3  
Reduction and compaction of biological waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus. In our reactor concept for a worm reactor, the worms are immobilised in a carrier material. The size of a worm reactor will therefore mainly be determined by the sludge consumption rate per unit of surface area. This design parameter was determined in sequencing batch experiments using sludge from a municipal WWTP. Long-term experiments using carrier materials with 300 and 350 μm mesh sizes showed surface specific consumption rates of 45 and 58 g TSS/(m2 d), respectively. Using a 350 μm mesh will therefore result in a 29% smaller reactor compared to using a 300 μm mesh. Large differences in consumption rates were found between different sludge types, although it was not clear what caused these differences. Worm biomass growth and decay rate were determined in sequencing batch experiments. The decay rate of 0.023 d−1 for worms in a carrier material was considerably higher than the decay rate of 0.018 d−1 for free worms. As a result, the net worm biomass growth rate for free worms of 0.026 d−1 was much higher than the 0.009-0.011 d−1 for immobilised worms. Finally, the specific oxygen uptake rate of the worms was determined at 4.9 mg O2/(g ww d), which needs to be supplied to the worms by aeration of the water compartment in the worm reactor.  相似文献   

20.
Efficient removal of phthalate esters (PE) in wastewater treatment plants (WWTP) is becoming an increasing priority in many countries. In this study, we examined the fate of dimethyl phthalate (DMP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and di-(2-ethylhexyl) phthalate (DEHP) in a full scale activated sludge WWTP with biological removal of nitrogen and phosphorus. The mean concentrations of DMP, DBP, BBP, and DEHP at the WWTP inlet were 1.9, 20.5, 37.9, and 71.9 μg/L, respectively. Less than 0.1%, 42%, 35%, and 96% of DMP, DBP, BBP, and DEHP was associated with suspended solids, respectively. The overall microbial degradation of DMP, DBP, BBP, and DEHP in the WWTP was estimated to be 93%, 91%, 90%, and 81%, respectively. Seven to nine percent of the incoming PE were recovered in the WWTP effluent. Factors affecting microbial degradation of DEHP in activated sludge were studied using [U-14C-ring] DEHP as tracer. First order rate coefficients for aerobic DEHP degradation were 1.0×10−2, 1.4×10−2, and 1.3×10−3 at 20, 32, and 43 °C, respectively. Aerobic degradation rates decreased dramatically under aerobic thermophilic conditions (<0.1×10−2 h−1 at 60 °C). The degradation rate under anoxic denitrifying conditions was 0.3×10−2 h−1, whereas the rate under alternating conditions (aerobic-anoxic) was 0.8×10−2 h−1. Aerobic DEHP degradation in activated sludge samples was stimulated 5-9 times by addition of a phthalate degrading bacterium. The phthalate degrading bacterium was isolated from activated sludge, and maintained a capacity for DEHP degradation while growing on vegetable oil. Collectively, the results of the study identified several controls of microbial PE degradation in activated sludge. These controls may be considered to enhance PE degradation in activated sludge WWTP with biological removal of nitrogen and phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号