首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A metallic system acting as a seed substrate has been designed and developed in order to assess its efficiency in recovering phosphorus as struvite. The device, consisting of two concentric stainless steel meshes, was immerged in the upper section of a pilot crystallisation reactor fed with synthetic liquors (MgCl2·6H2O, NH4H2PO4,) for 2 h. Apart from soluble PO4-P removals which remained in the range 79-80% with or without application of the metallic system, it was found that under the specific operating conditions tested the meshes were capable of accumulating struvite at a rate of 7.6 gm−2 h−1, hence reducing significantly the amount of fine particles remaining in solution from 302.2 to 12 mg L−1 when compared to trials without mesh.  相似文献   

2.
A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (< 177 mg L1) and aluminium (< 85 mg L1) and to increase pH (> 3.2) and alkalinity (≥ 0 mg L1 CaCO3 eq). Secondary objectives were to decrease zinc (< 2.8 mg L1), manganese (< 20.5 mg L1) and sulfate (< 2120 mg L1). Upon treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO42. Alkalinity (74%) and pH (95% as H+) were increased. Area adjusted removal rates (Fe = 1.49 ± 0.66 g d1 m2; acidity = 6.7 ± 4.9 g d1 m2) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk.  相似文献   

3.
Increasing concern about the fate of 17α-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent. A maximum EE2 removal rate of 9.0 μg EE2 g−1 biomass-VSS h−1 was achieved (>94% removal efficiency). Incubation of the heterotrophic bacteria isolated from the NEC did not result in a significant EE2 removal, indicating the importance of nitrification as driving force in the mechanism. Application of the NEC in a MBR to treat a synthetic influent with an EE2 concentration of 83 ng EE2 L−1 resulted in a removal efficiency of 99% (loading rates up to 208 ng EE2 L−1 d−1; membrane flux rate: 6.9 L m−2 h−1). Simultaneously, complete nitrification was achieved at an optimal ammonium influent concentration of 1.0 mg NH4+-N L−1. This minimal NH4+-N input is very advantageous for effluent polishing since the concomitant effluent nitrate concentrations will be low as well and it offers opportunities for the nitrifying MBR as a promising add-on technology for WWTP effluent polishing.  相似文献   

4.
A system for the removal and control of dissolved oxygen (DO) from freshwater was designed and constructed with aquarium-type fish studies in mind. Degassed water was obtained using a partial vacuum of −14 psi, and DO regulated at an aquarium scale using electronically controlled aeration with timed partial water renewal. The degassing system was capable of producing water with ∼1.7 mg L−1 DO within 10 min of operation, and 0.55 mg L−1 after 2 h. The control system was capable of maintaining DO levels of ca 0.8 mg L−1 over 48 h in the absence of aeration and further capable of precisely controlling DO levels as low as 1.16±0.002 mg L−1 (mean±SEM) with aeration over a 48 h period.  相似文献   

5.
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L−1 and 2.13 ± 0.05 mg N L−1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.  相似文献   

6.
Phosphorus limitation has been demonstrated for heterotrophic growth in groundwater, in drinking water production and distribution systems, and for nitrification of surface water treatment at low temperatures. In this study, phosphorus limitation was tested, in the Netherlands, for nitrification of anaerobic groundwater rich in iron, ammonium and orthophosphate. The bioassay method developed by Lehtola et al. (1999) was adapted to determine the microbially available phosphorus (MAP) for nitrification. In standardized batch experiments with an enriched mixed culture inoculum, the formation of nitrite and nitrate and ATP and the growth of ammonia-oxidizing bacteria (AOB; as indicated by qPCR targeting the amoA-coding gene) were determined for MAP concentrations between 0 and 100 μg PO4-P L−1. The nitrification and microbial growth rates were limited at under 100 μg PO4-P L−1 and virtually stopped at under 10 μg PO4-P L−1. In the range between 10 and 50 μg PO4-P L−1, a linear relationship was found between MAP and the maximum nitrification rate. AOB cell growth and ATP formation were proportional to the total ammonia oxidized. Contrary to Lehtola et al. (1999), biological growth was very slow for MAP concentrations less than 25 μg PO4-P L−1. No full conversion nor maximum cell numbers were reached within 19 days. In full-scale groundwater filters, most of the orthophosphate was removed alongside with iron. The remaining orthophosphate appeared to have only limited availability for microbial growth and activity. In some groundwater filters, nitrification was almost totally prevented by limitation of MAP. In batch experiments with filtrate water from these filters, the nitrification process could be effectively stimulated by adding phosphoric acid.  相似文献   

7.
Li B  Brett MT 《Water research》2012,46(3):837-844
Because eutrophication is a widespread consequence of wastewater discharges, there is a strong impetus to develop new approaches to remove phosphorus (P) from wastewater treatment plant (WWTP) effluents. We examined the effluents from a pilot plant that is testing various alum based processes for achieving > 99% P removal, however, it is not known how these advanced P removal technologies affect the bioavailability of P (BAP). We tested how the percent BAP (%BAP) varied with different P removal levels using an algal growth bioassay methodology. This facility reduced total P concentrations from ≈ 500 μg L−1 in the pilot plant influent to 19 ± 4 (±SD) μg L−1 in the final effluent, and our results showed that as the level of P removal increased, the %BAP of the product declined sharply, r2 = 0.98. Prior to alum treatment, the influent had an average %BAP of 79 ± 13%, and after three steps of alum-based removal the %BAP averaged 7 ± 4%. Thus, this alum based P removal process was very effective at sequestering the P forms that most readily stimulate algal growth. Further, our results show the final BAP of the effluent was only ≈ 50% of the “reactive” P concentration. These results have important implications for nutrient management and trading schemes.  相似文献   

8.
Tokumura M  Znad HT  Kawase Y 《Water research》2008,42(18):4665-4673
The decolorization of dark brown colored coffee effluent by solar photo-Fenton process has been studied. Effects of accumulated solar light energy and dosage of Fenton reagents (iron and hydrogen peroxide) on the color removal have been examined. With increasing Fe dosage the rate of the decolorization increased but the enhancement was not pronounced beyond 10 mg L−1. Although addition of H2O2 increased the decolorization rate up to around 1000 mg L−1 of H2O2, further addition of H2O2 could not enhance the color removal. At excess dosages of Fenton reagents, the color removal was not improved due to their scavenging of hydroxyl radicals. It was found that the pseudo-first order decolorization kinetic constant based on the accumulated solar energy is a sole parameter unifying solar photo-Fenton decolorization processes under the different weather conditions. The kinetic constant can be readily used to calculate the amount of solar energy required to achieve a certain degree of color removal. The mineralization was rather slower as compared with the decolorization. The decolorization capability with solar irradiation was found to be comparable to UV light irradiation. The present results suggest that abundant solar energy driving decolorization of coffee effluent by photo-Fenton reaction is highly efficient.  相似文献   

9.
The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe = 5 mg L−1 in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 μg L−1, was found to depend on the presence of CO32− and HCO3 (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H2O2 concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase.  相似文献   

10.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

11.
A combined strategy of a photo-Fenton pretreatment followed by a Sequencing Batch Biofilm Reactor (SBBR) was evaluated for total C and N removal from a synthetic wastewater containing exclusively 200 mg L−1 of the antibiotic Sulfamethoxazole (SMX). Photo-Fenton reaction was optimized at the minimum reagent doses in order to improve the biocompatibility of effluents with the subsequent biological reactor. Consequently, the pretreatment was performed with two different initial H2O2 concentrations (300 and 400 mg L−1) and 10 mg L−1 of Fe2+. The pre-treated effluents with the antibiotic intermediates as sole carbon source were used as feed for the biological reactor. The SBBR was operated under aerobic conditions to mineralize the organic carbon, and the Hydraulic Retention Time (HRT) was optimized down to 8 h reaching a removal of 75.7% of the initial Total Organic Carbon (TOC). The total denitrification of the NO3 generated along the chemical-biological treatment was achieved by means of the inclusion of a 24-h anoxic stage in the SBBR strategy. In addition, the Activated Sludge Model No. 1 (ASM1) was successfully used to complete the N balance determining the N fate in the SBBR.The characterization and the good performance of the SBBR allow presenting the assessed combination as an efficient way for the treatment of wastewaters contaminated with biorecalcitrant pharmaceuticals as the SMX.  相似文献   

12.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

13.
The innovative technique of Life Cycle Impact Assessment (LCIA) applied to dynamic environmental systems has been recently developed. In this work we investigate a complex system, the Domingo Rubio tideland (Huelva, Spain), where a tidal marsh and a continental lagoon converge. This wetland, catalogued as Natural Park by the Andalusia government, is subjected to a high eutrophicant pressures related to the strawberry culture and the inputs coming from industrial wastes. NO2, NO3 and PO43− were analyzed in 41 water samples, obtaining values up to 100 mg L− 1 Σ(NO2, NO3) and 18.5 mg L− 1 PO43−. All these values exceed the accepted levels by the European Environment Agency. N/P ratios and the Aquatic Eutrophication Potentials (AEP) for N and P showed a constant imbalance of the system. During one tidal cycle, the tidal channel can have both N and P as limiting nutrient (P is the limiting nutrient during low tide and N is during high tide) and there exists an alternation of AEP domination too between N and P in the continental area, what points to an excess of both nutrients all over the study area, and to the necessity of diminishing the nutrient inputs and a higher control on these pollution sources as well.  相似文献   

14.
The aim of this study was to detect and characterise melanoidin in sewage treatment plant (STP) effluent, and to study the ability of alum coagulation to remove the colour and dissolved organic nitrogen (DON) associated with melanoidin. The melanoidin is non-biodegradable due to the complex cyclic based structure and thus it directly contributes to effluent nitrogen concentrations from the sewage treatment plant (STP). Lowering of effluent total nitrogen limits and the link between colour and chlorinated disinfection by-products have therefore driven a need to understand the structure, properties and treatability of DON species found in STP effluent.The focus of this paper is the refractory coloured, organic nitrogen compound melanoidin. Wetalla STP effluent has relatively high colour (170 mg-PtCo L−1) and DON (2.5 mg L−1) for a biological nutrient removal STP, owing to an industrial supply of melanoidin containing molasses fermentation wastewater. Alum coagulation jar tests were performed on synthetic melanoidin solution, STP effluent containing melanoidin (Wetalla, Toowoomba, Australia) and STP effluent free of melanoidin (Merrimac, Gold Coast, Australia) to examine the treatability of melanoidin and its associated colour and DON content when present in STP effluent.The removal of melanoidin from STP effluent resulted in significant colour and DON reduction. An alum dose of 30 mg L−1 as aluminium was sufficient to reach maximum removal of colour (75%), DON (42%) and dissolved organic carbon (DOC) (30%) present in melanoidin containing STP effluent. Alum was shown to preferentially remove DON with a molecular weight >10 kDa over small molecular weight DON. Fluorescence excitation-emission matrix examination of the humic compounds present in the STP effluent indicated that melanoidin type humic compounds were more readily removed by alum coagulation than other humic compounds.  相似文献   

15.
Lousal mine is a typical “abandoned mine” with all sorts of problems as consequence of the cessation of the mining activity and lack of infrastructure maintenance. The mine is closed at present, but the heavy metal enriched tailings remain at the surface in oxidizing conditions. Surface water and stream sediments revealed much higher concentrations than the local geochemical background values, which the “Contaminated Sediment Standing Team” classifies as very toxic. High concentrations of Cu, Pb, Zn, As, Cd and Hg occurred within the stream sediments downstream of the tailings sites (up to: 817 mg kg−1 As, 6.7 mg kg−1 Cd, 1568 mg kg−1 Cu, 1059 mg kg−1 Pb, 82.4 mg kg−1 Sb, 4373 mg kg−1 Zn). The AMD waters showed values of pH ranging from 1.9 to 2.9 and concentrations of 9249 to 20,700 mg L−1 SO4−2, 959 to 4830 mg L−1 Fe and 136 to 624 mg L−1 Al. Meanwhile, the acid effluents and mixed stream waters also carried high contents of SO42−, Fe, Al, Cu, Pb, Zn, Cd, and As, generally exceeding the Fresh Water Aquatic Life Acute Criteria. Negative impacts in the diatom communities growing at different sites along a strong metal pollution gradient were shown through Canonical Correspondence Analysis: in the sites influenced by Acid Mine Drainage (AMD), the dominant taxon was Achnanthidium minutissimum. However, Pinnularia acoricola was the dominant species when the environmental conditions were extremely adverse: very low pH and high metal concentrations (sites 2 and 3). Teratological forms of Achnanthidium minutissimum (Kützing) Czarnecki, Brachysira vitrea (Grunow) Ross in Hartley, Fragilaria rumpens (Kützing) G. W. F. Carlson and Nitzschia hantzschiana Rabenhorst were found. A morphometric study of B. vitrea showed that a decrease in size was evident at the most contaminated sites. These results are evidence of metal and acidic pollution.  相似文献   

16.
In this study, we investigated the efficiency of dissolved methane (D-CH4) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH4 discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH4 concentration could be reduced from 63 mg COD L−1 to 15 mg COD L−1; this, in turn, resulted in an increase in total methane (CH4) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH4 concentration was as high as 104 mg COD L−1 at 15 °C because of the higher solubility of CH4 gas in liquid; the average D-CH4 concentration was reduced to 14 mg COD L−1 by degasification. Accordingly, total CH4 recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH4 concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L−1) regardless of the HRT value, the CH4 discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH4 concentration could be reduced down to 12 ± 1 mg COD L−1 by degasification at an HRT of 6.7 h, the CH4 recovery rate was 1.5 times higher under degasification than under normal operation.  相似文献   

17.
Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO2 and N2O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO3 L− 1 solution (rate: 90 mL day− 1) for 125 days at two different temperatures (10 and 20 °C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO3 concentration, NH4+ concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO2 and N2O) were determined in the undisturbed soil columns. The A horizon at 20 °C showed the highest rates of NO3 removal (1.56 mg N-NO3 kg−1 DW soil day− 1) and CO2 and N2O production (5.89 mg CO2 kg−1 DW soil day− 1 and 55.71 μg N-N2O kg−1 DW soil day− 1). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO3 ha− 1 year− 1, and potential greenhouse gas emissions of 5620 kg CO2 ha− 1 year− 1 and 240 kg N-N2O ha− 1 year− 1.  相似文献   

18.
Biological removal of phenol from strong wastewaters using a novel MSBR   总被引:2,自引:0,他引:2  
In this study, the performance of a moving-bed sequencing batch reactor (MSBR) that removes phenol from wastewater is presented. The effects of phenol concentration (50-3325 mg L−1), filling time (0-4 h) and aerating time (4-18 h) on the performance of the MSBR are given in terms of phenol and COD removal efficiencies. Moreover, the effect of the moving media on the overall performance of the reactor is also determined. The reactor can completely remove phenol and COD at inlet concentrations up to 3000 mg phenol L−1 (6780 mg COD L−1), which was the inhibition concentration, and with a 24-h cycle time. The filling time range tested here did not significantly affect phenol or COD removal. The optimum hydraulic retention time (HRT) for the MSBR is 40 h and the critical phenol loading rate is 83.4 g phenol m−3 h−1, which gives a phenol removal efficiency of 99%. The reactor can also withstand shock loads from slug feeding. The moving bed contribution to phenol and COD removal efficiencies was up to 28.1 and 34.7%, respectively, at the phenol loading rate of 83.4 g m−3 h−1. The findings of this investigation suggest that MSBR can be a robust and promising process for effectively treating wastewaters containing inhibitor or recalcitrant compounds in industrial settings.  相似文献   

19.
Gradients in phosphorus (P) removal and storage were investigated over 6 years using mesocosms (each consisting of three tanks in series) containing submerged aquatic vegetation (SAV) grown on muck and limerock (LR) substrates. Mean inflow total P concentrations (TP) of 32 μg L−1 were reduced to 15 and 17 μg L−1 in the muck and LR mesocosms, respectively. Mesocosm P loading rates (mean = 1.75 g m−2 year−1) varied widely during the study and were not correlated with outflow TP, which instead varied seasonally with lowest monthly mean values in December and January.The mesocosms initially were stocked with Najas guadalupensis, Ceratophyllum demersum, and Chara zeylanica, but became dominated by C. zeylanica. At the end of the study, highest vegetative biomass (1.1 and 1.4 kg m−2 for muck and LR substrates) and tissue P content (1775 and 1160 mg kg−1) occurred in the first tank in series, and lowest biomass (1.0 and 0.2 kg m−2) and tissue P (147 and 120 mg kg−1) in the third tank. Sediment accretion rates (2.5, 1.9 and 0.9 cm yr−1 on muck substrates), accrued sediment TP (378, 309 and 272 mg kg−1), and porewater soluble reactive P (SRP) concentrations (40, 6 and 4 μg L−1) in the first, second and third tanks, respectively, exhibited a similar decreasing spatial trend. Plant tissue calcium (Ca) near mesocosm inflow (19-30% dry weight) and outflow (23-26%) were not significantly different, and sediment Ca was also similar (range of 24 to 28%) among sequential tanks.Well-defined vegetation and sediment enrichment gradients developed in SAV wetlands operated under low TP conditions. While the mesocosm data did not reflect deterioration in treatment performance over 6 years, accumulation of P-enriched sediments near the inflow could eventually compromise hydraulic storage and P removal effectiveness of these shallow systems.  相似文献   

20.
The interference of ammonia with chlorination is a prevalent problem encountered by water treatment plants located throughout South East Asia. The efficacy of high rate, plastic-packed trickling filters as a pre-treatment process to remove low concentrations of ammonia from polluted surface water was investigated. This paper presents the findings from a series of pilot experiments, which were designed to investigate the effect of specific conditions—namely low ammonia feed concentrations (0.5-5.0 mg NH4-N L−1), variations in hydraulic surface load (72.5-145 m3 m−2 d−1) and high suspended solid loads (51 ± 25 mg L−1)—on filter nitrifying capacity. The distribution of nitrification activity throughout a trickling filter bed was also characterised. Results confirmed that high hydraulic rate trickling filters were able to operate successfully, under ammonia-N concentrations some 10- to 50-fold lower and at hydraulic loading rates 30-100 times greater than those of conventional wastewater applications. Mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant, where apparent nitrification rates (0.4-1.6 g NH4-N m−2 d−1), equivalent to that of wastewater filters were recorded. High inert suspended solid loadings had no adverse effect on nitrification. Results imply that implementation of high rate trickling filters at the front-end of a water treatment train would reduce the ammonia-related chlorine demand, thereby offering significant cost savings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号