首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption of emerging trace organic compounds onto wastewater sludge solids   总被引:1,自引:0,他引:1  
This work examined the sorption potential to wastewater primary- and activated-sludge solids for 34 emerging trace organic chemicals at environmentally relevant concentrations. These compounds represent a diverse range of physical and chemical properties, such as hydrophobicity and charge state, and a diverse range of classes, including steroidal hormones, pharmaceutically-active compounds, personal care products, and household chemicals. Solid-water partitioning coefficients (Kd) were measured where 19 chemicals did not have previously reported values. Sludge solids were inactivated by a nonchemical lyophilization and dry-heat technique, which provided similar sorption behavior for recalcitrant compounds as compared to fresh activated-sludge. Sorption behavior was similar between primary- and activated-sludge solids from the same plant and between activated-sludge solids from two nitrified processes from different wastewater treatment systems. Positively-charged pharmaceutically-active compounds, amitriptyline, clozapine, verapamil, risperidone, and hydroxyzine, had the highest sorption potential, log Kd = 2.8-3.8 as compared to the neutral and negatively-charged chemicals. Sorption potentials correlated with a compound’s hydrophobicity, however the higher sorption potentials observed for positively-charged compounds for a given log Dow indicate additional sorption mechanisms, such as electrostatic interactions, are important for these compounds. Previously published soil-based one-parameter models for predicting sorption from hydrophobicity (log Kow > 2) can be used to predict sorption for emerging nonionic compounds to wastewater sludge solids.  相似文献   

2.
The objective of this study was to examine sorption of a suite of 19 trace organic contaminants (TOrCs) to activated sludge. Compounds examined in this study included neutral, nonionized TOrCs as well as acidic TOrCs which may carry a negative charge and basic TOrCs which may carry a positive charge at the pH of wastewater. These TOrCs were evaluated to examine how sorptive behavior might differ for TOrCs in different states of charge. Additionally, multiple sludges from geographically and operationally different wastewater treatment plants were studied to elicit how solid-phase characteristics influence TOrC sorption. Characterization of sludge solids from 6 full scale treatment facilities and 3 bench-scale reactors showed no significant difference in fraction organic carbon (foc) and cation exchange capacity (CEC). Sorption experiments demonstrated that sorption of TOrCs also exhibits little variation between these different sludges. Organic carbon normalized partition coefficients (log Koc) were determined as a measure of sorption, and were found to correlate well with octanol-water partition coefficients (log Kow) for nonionized TOrCs, and log Dow for anionic TOrCs where log Dow is greater than 2. These data were used to construct a linear free energy relationship (LFER), which was comparable to existing LFERs for sorption onto sludge. No trend in sorption was apparent for the remaining anionic TOrCs or for the cationic TOrCs. These data suggest that predicting sorption to activated sludge based on Kow values is a reasonable approach for neutral TOrCs using existing LFERs, but electrostatic (and likely other) interactions may govern the sorptive behavior of the charged organic chemicals to sludge.  相似文献   

3.
We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption—namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol—and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals—propranolol, indomethacin, and ifenprodil—were relatively easily photodegraded (i.e., half-life < 24 h), whereas the other five pharmaceuticals were relatively stable against sunlight. The results of batch biodegradation experiments using river water suggested relatively slow biodegradation (i.e., half-life > 24 h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (Kd values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the Kd values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (log Koc) showed a poor linear correlation with the octanol-water distribution coefficient (log Dow) at neutral pH. These results suggest other sorption mechanisms—such as electrochemical affinity, in addition to hydrophobic interaction—play an important role in sorption to sediment/soil at neutral pH.  相似文献   

4.
The water solubilities (S), octanol/water partition coefficients (Kow) and bioconcentration factors (BCF) of four polydimethylsiloxane (PDMS) fluids covering a wide range of molecular weight were measured. It is shown that a previously described correlation between S and Kow for organic chemicals may be invalid for PDMS fluids; an alternative correlation is proposed. Some PDMS fluids tend to have a bioconcentration potential in silver carp.  相似文献   

5.
A quantitative structure activity relationship (QSAR) model has been produced for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors, pesticides and other organic compounds) by polyamide nanofiltration (NF) membranes. Principal component analysis, partial least square regression and multiple linear regressions were used to find a general QSAR equation that combines interactions between membrane characteristics, filtration operating conditions and compound properties for predicting rejection. Membrane characteristics related to hydrophobicity (contact angle), salt rejection, and surface charge (zeta potential); compound properties describing hydrophobicity (log Kow, log D), polarity (dipole moment), and size (molar volume, molecular length, molecular depth, equivalent width, molecular weight); and operating conditions namely flux, pressure, cross flow velocity, back diffusion mass transfer coefficient, hydrodynamic ratio (Jo/k), and recovery were identified as candidate variables for rejection prediction. An experimental database produced by the authors that accounts for 106 rejection cases of emerging contaminants by NF membranes as result of eight experiments with clean and fouled membranes (NF-90, NF-200) was used to produce the QSAR model. Subsequently, using the QSAR model, rejection predictions were made for external experimental databases. Actual rejections were compared against predicted rejections and acceptable R2 correlation coefficients were found (0.75 and 0.84) for the best models. Additionally, leave-one-out cross-validation of the models achieved a Q2 of 0.72 for internal validation. In conclusion, a unified general QSAR equation was able to predict rejections of emerging contaminants during nanofiltration; moreover the present approach is a basis to continue investigation using multivariate analysis techniques for understanding membrane rejection of organic compounds.  相似文献   

6.
Municipal biosolids are a useful source of nutrients for crop production, and commonly used in agriculture. In this field study, we applied dewatered municipal biosolids at a commercial rate using broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 21 and 34 days following the application on 2 m2 microplots to evaluate surface runoff of various pharmaceuticals and personal care products (PPCPs), namely atenolol, carbamazepine, cotinine, caffeine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole, triclosan and triclocarban. There was little temporal coherence in the detection of PPCPs in runoff, various compounds being detected maximally on days 1, 3, 7 or 36. Maximum concentrations in runoff ranged from below detection limit (gemfibrozil) to 109.7 ng L− 1 (triclosan). Expressing the total mass exported as a percentage of that applied, some analytes revealed little transport potential (< 1% exported; triclocarban, triclosan, sulfamethoxazole, ibuprofen, naproxen and gemfibrozil) whereas others were readily exported (> 1% exported; acetaminophen, carbamazepine, caffeine, cotinine, atenolol). Those compounds with little transport potential had log Kow values of 3.18 or greater, whereas those that were readily mobilized had Kow values of 2.45 or less. Maximal concentrations of all analytes were below toxic concentrations using a variety of endpoints available in the literature. In summary, this study has quantified the transport potential in surface runoff of PPCPs from land receiving biosolids, identified that log Kow may be a determinant of runoff transport potential of these analytes, and found maximal concentrations of all chemicals tested to be below toxic concentrations using a variety of endpoints.  相似文献   

7.
Triclocarban (TCC) is an active ingredient in antibacterial bar soaps, a common constituent of domestic wastewater, and the subject of recent criticism by consumer advocate groups and academic researchers alike. Activated sludge treatment readily removes TCC from the liquid waste stream and concentrates the antimicrobial in the solid fraction, which is often processed to produce biosolids intended for land application. Greater than half of the biosolids generated in the US are land-applied, resulting in a systematic release of biosolids-borne TCC into the terrestrial and, potentially, the aquatic environment. Multiple data gaps in the TCC literature (including basic physicochemical properties and biosolids concentrations) prevent an accurate, quantitative risk assessment of biosolids-borne TCC. We utilized the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) harmonized test guidelines to measure TCC solubility and log Kow values as 0.045 mg L1 and 3.5, respectively. The measured physicochemical 2 properties differed from computer model predictions. The mean concentration of TCC in 23 biosolids representative of multiple sludge processing methods was 19 ± 11 mg kg1.  相似文献   

8.
This study investigates the occurrence of all priority substances (n = 41) listed in the Water Framework Directive and additional substances (n = 47) in raw sewage, as well as the removal performance of lamella clarification and biofiltration techniques. Once the efficiency of both types of techniques has been assessed for typical wastewater parameters, the differences in each technique's ability to remove pollutants becomes obvious; nevertheless, pollutant removal in quantitative terms still depends on the physico-chemical properties of the compounds used and operating conditions within the selected facility. For lamella clarification, the removal of organic chemicals was found to be primarily correlated with their sorption potential and, hence, strongly dependent upon log Kow of the compound under study. Compounds with a strong hydrophobic character (log Kow > 4.5) are removed to a significant extent (approx. 85%), while hydrophilic compounds (log Kow < 3.5) are poorly removed (<20%). For biofiltration, the removal of chemicals appears to be compound-dependent, although this outcome involves several mechanisms, namely: i) physical filtration of total suspended solids, ii) volatilisation, iii) sorption, and iv) biotransformation of substances. Even if the complex processes within a biofilter system do not yield an accurate prediction of pollutant removal, two groups of chemicals can still be clearly identified: i) hydrophobic or volatile compounds, for which moderate to high removal rates are observed (from 50% to over 80%); and ii) hydrophilic, non-volatile and refractory compounds for which a low removal rate would be expected (<20%).  相似文献   

9.
The aim of the present study was to elucidate consistent patterns in chronic polycyclic aromatic compound (PAC) toxicity to soil and sediment inhabiting invertebrates. Therefore we examined our experimental dataset, consisting of twenty-one chronic effect concentrations for two soil invertebrates (Folsomia candida and Enchytraeus cripticus) and two sediment invertebrates (Lumbriculus variegatus and Chironomus riparius) exposed to six PACs (two homocyclic isomers, anthracene and phenanthrene; two azaarene isomers: acridine and phenanthridine; and two azaarene transformation products, acridone and phenanthridone). In order to determine if effect concentrations were accurately predicted by existing toxicity-Kow relationships describing narcosis, chronic pore water effect concentrations were plotted jointly against logKow. Fifteen of the twenty-one effect concentrations (71%) were above the lower limit for narcosis, showing that narcosis was the main mode of action for the majority of the tested homo- and heterocyclic PACs during chronic exposure. Toxicity of all tested compounds to soil organisms was accurately described by the toxicity-Kow relationship. However, for the sediment invertebrates exposed to some of the tested heterocyclic PACs deviations from narcosis were identified, related to specific physicochemical properties of the test compounds and/or species specific sensitivities. It is concluded that existing toxicity-Kow relationships describing narcosis in some cases underestimate chronic PAC toxicity to sediment inhabiting invertebrates.  相似文献   

10.
Ang WS  Elimelech M 《Water research》2008,42(16):4393-4403
Effluent organic matter (EfOM) contributes significantly to organic fouling of reverse osmosis (RO) membranes in advanced wastewater reclamation. In this study, the effect of feed solution chemistry (solution pH and Ca2+ concentration) on the fouling of RO membranes by octanoic acid—selected to represent fatty acids in EfOM—is investigated. Crossflow fouling experiments demonstrate that RO membrane fouling is much more significant at solution pH below the pKa of the octanoic acid (pKa = 4.9) than at an elevated pH. Octanoic acid permeates across the membranes more readily at solution pH below its pKa than at elevated pH. At pH below the octanoic acid pKa, fouling behavior is not affected by calcium ions, whereas at elevated pH, the rate of flux decline decreases with higher calcium ion concentration. The effect of calcium on the fouling behavior was further verified from foulant-foulant adhesion forces, determined by atomic force microscopy (AFM) force measurements under solution chemistries identical to those of the crossflow fouling experiments. To investigate the implications of octanoic acid fouling for wastewater reclamation, the effect of octanoic acid on membrane fouling by a combination of organic foulants in the presence of calcium ions is studied. At a solution chemistry simulating that of typical wastewater effluents, the addition of octanoic acid to a feed solution containing alginate, bovine serum albumin, and Suwannee River natural organic matter, does not enhance membrane fouling behavior. This observation could be attributed to the significant contribution of the alginate-calcium complexes within the fouling layer to the total membrane resistance.  相似文献   

11.
Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas.  相似文献   

12.
Peng Ye 《Water research》2009,43(5):1303-1312
The adsorption and degradation of 4,6-o-dinitrocresol (DNOC) and p-nitrophenol (PNP) in SWy-2 montmorillonite clay slurry were investigated. The pH and type of cation of the slurry were varied. Results showed that adsorption of DNOC and PNP increased at lower pH values, and when pH < pKa (4.4) of DNOC, DNOC was almost completely adsorbed on the clay under given experimental conditions. The specific cation also had a significant effect on adsorption, which was dramatically enhanced in the presence of K+ and NH4+, compared with the presence of Na+ or Ca2+. Anodic Fenton treatment (AFT) degradation of DNOC and PNP in the clay slurry was studied, and it was found that DNOC degradation rates were greatly affected by the initial pH and the types of electrolytes. Due to the higher adsorption, the degradation rate substantially decreased in the clay slurry system in the presence of K+ and low pH, with a large amount of DNOC residue remaining after 60 min treatment. AFT degradation of PNP was completed within 30 min treatment. Based on LC-MS data, a DNOC degradation pathway was proposed. Overall, the results showed the inhibition effect of adsorption on the degradation of nitroaromatic compounds in montmorillonite clay slurry by AFT, providing important implications for water and soil remediation.  相似文献   

13.
Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid (≈ octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log KOW > 4 and log KOA > 8), the ppLFER model predicted ~ 90% lower body burdens for hydrophilic chemicals (log KOW < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified.  相似文献   

14.
Polyethylene-water partitioning coefficients (KPE) and mass transfer coefficients (kPE) for the ortho and para isomers of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites dichlorodiphenyldichloroethane (DDD), dichlorodiphenyldichloroethylene (DDE) and, dichlorodiphenylmonochloroethylene (DDMU) were measured. These data were used to derive activated carbon (AC) sorption isotherms in clean water in the sub-nanogram per litre free aqueous concentration range for a virgin and a regenerated AC. The sorption strength of AC for DDT and its metabolites was very high and logarithmic values of the AC-water partitioning coefficients, log KAC, ranged from 8.47 to 9.26. A numerical mass transfer model was calibrated with this data to interpret previously reported reductions in DDT uptake by semipermeable membrane devices after AC amendment of sediment from Lauritzen Channel, California, USA. The activated carbon-water partitioning coefficient values (KAC) measured in clean water systems appear to overestimate the AC sorption capacity in sediment up to a factor 32 for DDT and its metabolites at long contact time with fine-sized AC. Modelling results show decreased attenuation of the AC sorption capacity with increased sediment-AC contact time. We infer that increased resistance in mass transfer of DDTs to sorption sites in the microporous region likely caused by deposits of dissolved organic matter in the macro- and mesopores of AC appears to be the most relevant fouling mechanism. These results suggest that DDTs may diffuse through possible deposits of dissolved organic matter over time, implying that the effects of sediment on the sorption of DDTs by AC may be more kinetic than competitive.  相似文献   

15.
A coconut shell activated carbon precursor was modified by impregnation with phosphoric acid. The effects of the particle diameter of the impregnated activated carbons (IACs) on the thickness, pressure resistance, and face velocity of a chemical filter were investigated. Furthermore, volatile organic compounds (VOCs) adsorption experiments were carried out to determine the relationship between the removal efficiency and the chemical properties of the adsorbents. The effects of various parameters such as challenge gas concentration, saturated adsorption ratio, impregnation method and impregnant contents were investigated. The results showed that the effect of face velocity on pressure resistance is larger than that of the thickness, that 0.25 M phosphoric acid impregnation of activated carbon can raise VOC removal efficiency by 2–3% (toluene: from 95.8% to 98.1%, isopropanol: from 95.2 to 97.2%), and that the optimal impregnation time is around 1.5 h. A simple shaking impregnation method exhibited better performance than the ultrasonic method.  相似文献   

16.
The distribution of the solvent-extractable organic components in the fine (PM1) and coarse (PM1-10) fractions of airborne particulate was studied for the first time in Algeria. That was done during October 2006 concurrently in a big industrial district, a busy urban area, and a forest national park located in Algiers, Boumerdes, Blida, respectively, which are the three biggest provinces of Northern Algeria. Most of the organic matter identified in both particle size ranges consisted of n-alkanes and n-alkanoic acids, with minor contributions coming from polycyclic aromatic hydrocarbons (PAHs), nitrated polycyclic aromatic hydrocarbons (NPAHs), oxygenated PAHs, and other polar compounds (e.g., caffeine and nicotine). The potential emission sources of airborne contaminants were reconciled by combining the values of n-alkane carbon preference index (CPI) and selected diagnostic ratios of PAHs, calculated in both size ranges. The mean cumulative concentrations of PAHs reached 3.032 ng m− 3 at the Boumerdes site, urban, 80% of which (i.e. 2.246 ng m− 3) in the PM1 fraction, 6.462 ng m− 3 at Rouiba-Réghaia, industrial district, (5.135 ng m− 3 or 80% in PM1), and 0.512 ng m− 3 at Chréa, forested mountains (0.370 ng m− 3 or 72% in PM1). Similar patterns were shown by all organic groups, which resulted overall enriched in the fine particles at the three sites. Carcinogenic and mutagenic potencies associated to PAHs were evaluated by multiplying the concentrations of “toxic” compounds times the corresponding potency factors normalized vs. benzo(a)pyrene (BaP), and were found to be both acceptable.  相似文献   

17.
Bioconcentration of lipophilic compounds by oligochaete worms has been modelled as consecutive partition equilibria, firstly between sediment and interstitial water and then between interstitial water and worm. Each interphase process has been assumed to proceed according to first order kinetics. The resulting expression for the biotic concentration as a function of time has been fitted to experimental data over the range 3 ≤ log Kow ≤ 6 by varying the kinetic rate constants using a constrained, nonlinear least squares procedure. Relationships between uptake and clearance rate constants and log Kow are in accord with existing theory. The regression equation between the equilibrium bioconcentration factor, KB, and Kow also is in general agreement with previous relationships established for other aquatic organisms. For many of the high Kowcompounds equilibration times are longer than can be reasonably achieved in laboratory experiments. The methodology presented has an advantage in that it does not require the establishment of equilibrium for the estimation of KB, since the ratio of derived rate constants rather than biotic and water concentrations has been used.  相似文献   

18.
Atrazine removal from water by two polycations pre-adsorbed on montmorillonite was studied. Batch experiments demonstrated that the most suitable composite poly (4-vinylpyridine-co-styrene)-montmorillonite (PVP-co-S90%-mont.) removed 90-99% of atrazine (0.5-28 ppm) within 20-40 min at 0.367% w/w. Calculations employing Langmuir's equation could simulate and predict the kinetics and final extents of atrazine adsorption. Column filter experiments (columns 20 × 1.6 cm) which included 2 g of the PVP-co-S90%-mont. composite mixed with excess sand removed 93-96% of atrazine (800 ppb) for the first 800 pore volumes, whereas the same amount of granular activated carbon (GAC) removed 83-75%. In the presence of dissolved organic matter (DOM; 3.7 ppm) the efficiency of the GAC filter to remove atrazine decreased significantly (68-52% removal), whereas the corresponding efficiency of the PVP-co-S90%-mont. filter was only slightly influenced by DOM. At lower atrazine concentration (7 ppb) the PVP-co-S90%-mont. filter reduced even after 3000 pore volumes the emerging atrazine concentration below 3 ppb (USEPA standard). In the case of the GAC filter the emerging atrazine concentration was between 2.4 and 5.3 μg/L even for the first 100 pore volumes. Thus, the PVP-co-S90%-mont. composite is a new efficient material for the removal of atrazine from water.  相似文献   

19.
The performance and temporal variation of three hybrid and three integrated, saturated flow, pilot-scale constructed wetlands (CWs) were tested for treating dairy farm effluent. The three hybrid systems each consisted of two CWs in-series, with horizontal and vertical flow. Integrated systems consisted of a CW (horizontal and vertical flow) followed by a steel slag filter for removing phosphorus. Time series temporal semivariogram analyses of measured water parameters illustrated different treatment efficiencies existed over the course of one season. As a result, data were then divided into separate time period groups and CW systems were compared using ANOVA for parameter measurements within each distinct time period group. Both hybrid and integrated CWs were efficient in removing organics; however, hybrid systems had significantly higher performance (p < 0.05) during peak vegetation growth. Compared to hybrid CWs, integrated CWs achieved significantly higher DRP reduction (p < 0.05) throughout the period of investigation and higher ammonia reduction (p < 0.05) in integrated CWs was observed in late summer. Geochemical modeling demonstrates hydroxyapatite and vivianite minerals forming on steel slag likely control the fate of phosphate ions given the reducing conditions prevalent in the system. The model also demonstrates how the wastewater:slag ratio can be adjusted to maximize phosphorus removal while staying at a near-neutral pH.  相似文献   

20.
This study investigated the treatment performances of H2O2 oxidation alone and its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (Hong Kong) with a very low biodegradability ratio (BOD5/COD) of 0.08. The COD removal of refractory compounds (as indicated by COD values) by the integrated H2O2 and GAC treatment was evaluated, optimized and compared to that by H2O2 treatment alone with respect to dose, contact time, pH, and biodegradability ratio. At an initial COD concentration of 8000 mg/L and NH3-N of 2595 mg/L, the integrated treatment has substantially achieved a higher removal (COD: 82%; NH3-N: 59%) than the H2O2 oxidation alone (COD: 33%; NH3-N: 4.9%) and GAC adsorption alone (COD: 58%) at optimized experimental conditions (p ≤ 0.05; t-test). The addition of an Fe(II) dose at 1.8 g/L further improved the removal of refractory compounds by the integrated treatment from 82% to 89%. Although the integrated H2O2 oxidation and GAC adsorption could treat leachate of varying strengths, treated effluents were unable to meet the local COD limit of less than 200 mg/L and the NH3-N of lower than 5 mg/L. However, the integrated treatment significantly improved the biodegradability ratio of the treated leachate by 350% from 0.08 to 0.36, enabling the application of subsequent biological treatments for complementing the degradation of target compounds in the leachate prior to their discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号