首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B ucket-type samplers were installed in the unsaturated zone to intercept septic tank effluent descending through the Chalf at Snowdown, Kent. Better than 90 per cent removal of BOD and COD, and of the order of 99 per cent removal of coiform bacteria, were observed after downward percolation through 2.1 m of Chalk. Nitrification of ammonia had begun at that depth, but not at intermediate depth. The results, though limited, suggest that septic tank effluent is purified in the Chalk in a similar way to settled sewage.  相似文献   

2.
The effluent of 17 sewage treatment works (STW) across Norway, Sweden, Finland, The Netherlands, Belgium, Germany, France and Switzerland was studied for the presence of estradiol (E2), estrone (E1), ethinylestradiol (EE2) and nonylphenol (NP). Treatment processes included primary and chemical treatment only, submerged aerated filter, oxidation ditch, activated sludge (AS) and combined trickling filter with activated sludge. The effluent strength ranged between 87 and 846 L/PE (population equivalent), the total hydraulic retention time (HRT) ranged between 4 and 120 h, sludge retention time (SRT) between 3 and 30 d, and water temperature ranged from 12 to 21 °C. The highest estrogen values were detected in the effluent of the STW which only used primary treatment (13 ng/L E2 and 35 ng/L E1) and on one occasion in one of the STW using the AS system (6.5 ng/L E2, 50.5 ng/L E1, but on three other occasions the concentrations in this STW were at least a factor of 6 lower). For the 16 STW employing secondary treatment E2 was only detected in the effluent of six works during the study period (average 0.7-5.7 ng/L). E1 was detected in the effluent of 13 of the same STW. The median value for E1 for the 16 STW with secondary treatment was 3.0 ng/L. EE2 was only detected in two STW (1.1, <0.8-2.8 ng/L). NP could be detected in the effluent of all 14 STW where this measurement was attempted, with a median of 0.31 μg/L and values ranging from 0.05 to 1.31 μg/L. A comparison of removal performance for E1 was carried out following prediction of the probable influent concentration. A weak but significant (α<5%) correlation between E1 removal and HRT or SRT was observed.  相似文献   

3.
Regional-scale databases can be particularly useful for identifying relationships between dissolved inorganic nitrogen (N) leaching in forests and environmental drivers, which in turn allow an assessment of the risk of ecosystem damage, such as forest acidification and eutrophication of downstream water bodies. However, detecting the ‘signal’ of a significant correlate to N leaching against a background of wide variability in other factors requires a large number of sites, and the validation of models developed requires a similarly large number of independent sites. Here we use two large and fully independent databases of forest ecosystems across Europe to develop and validate indicators of N saturation and leaching. One database was used for model development and the other for validating these models.Among 35 variables considered, the most significant indicators of N leaching in the model development database were: the flux of dissolved inorganic N in deposition, mean annual temperature, mean altitude, the site drainage (plot vs catchment), needle- and litter-N concentration, organic horizon C:N ratio, and subsoil pH. Altitude was not a consistent predictor (it was significant in the development database but not in the validation database), and needle and litter N concentration, plot vs catchment, and subsoil pH all showed high intercorrelation with N deposition and so were not significant in models already including N deposition. The most consistent and useful indicators of N leaching were throughfall N deposition, organic horizon C:N ratio and mean annual temperature. Sites receiving low levels of N deposition (< 8 kg N ha− 1 y− 1) showed very low output fluxes of N and were simulated separately from more polluted forests. In general, the models successfully predicted N leaching (mean of ± 5 kg N ha− 1 y− 1 between observed and predicted) from forests at early to intermediate stages of nitrogen saturation but not from nitrogen-saturated sites. Thus, simple relationships developed from combining (1) external drivers (deposition, temperature) and (2) site conditions (nitrogen status of soils) can successfully estimate nitrogen leaching from forests that have not yet been highly damaged by N deposition.  相似文献   

4.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

5.
Incomplete elimination of bacteria and pharmaceutical drugs during wastewater treatment results in the entry of antibiotics and antibiotic-resistant bacteria into receiving streams with effluent inputs. In Mud Creek in Fayetteville, AR, ofloxacin, trimethoprim, and sulfamethoxazole have been detected in water and sediment, and tetracycline has been detected in sediment downstream of treated effluent input. These antibiotics have been measured repeatedly, but at low concentrations (< 1 μg/L) in the stream. To determine if effluent input results in detectable and stable changes in antibiotic resistances downstream of effluent input, antibiotic resistance in Escherichia coli and total coliform bacteria in Mud Creek stream water and sediment were determined using a culture-based method. Isolated E. coli colonies were characterized for multiple antibiotic resistance (MAR) patterns on solid media and to evaluate E. coli isolate richness by amplification of a partial uidA gene followed by denaturant gradient gel electrophoresis (DGGE). Despite temporal variability, proportions of antibiotic-resistant E. coli were generally high in effluent and 640 m downstream. The MAR pattern ampicillin-trimethoprim-sulfamethoxazole was associated with a DGGE profile that was detected in effluent and downstream E. coli isolates, but not upstream. Percent resistance among coliform bacteria to trimethoprim and sulfamethoxazole was higher 640 m downstream compared to upstream sediment and water (with one exception). Resistance to ofloxacin was too low to analyze statistically and tetracycline resistance was fairly constant across sites. Resistances changed from 640 m to 2000 m downstream, although dissolved nutrient concentrations within that stream stretch resembled effluent. Antibiotic resistant bacteria are entering the stream, but resistances change within a short distance of effluent inputs, more quickly than indicated based on chemical water properties. Results illustrate the difficulty in tracking the input and fate of antibiotic resistance and in relating the presence of low antibiotic concentrations to selection or persistence of antibiotic resistances.  相似文献   

6.
Septic tank systems are an important source of NO3(-) to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent delta15N-NH4+ values were almost constant and averaged +4.9 per thousand+/-0.4 per thousand (1 sigma). In contrast, delta15N values of NO3(-) leaving mature packed-bed filters were variable (+0.8 to +14.4 per thousand) and averaged +7.2 per thousand+/-2.6 per thousand. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl(-)-normalized N concentrations and 2-3 per thousand increases in delta15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3(-) in a local, shallow aquifer. Values of delta18O-NO3(-) leaving mature packed-bed filters ranged from -10.2 to -2.3 per thousand (mean -6.4 per thousand+/-1.8 per thousand), and were intermediate between a 2/3 H2O-O+1/3 O2-O conceptualization and a 100% H2O-O conceptualization of delta18O-NO3(-) generation during nitrification.  相似文献   

7.
M.D. Butler  Y.Y. Wang 《Water research》2009,43(5):1265-1697
Experiments were carried out to establish whether nitrous oxide (N2O) could be used as a non-invasive early warning indicator for nitrification failure. Eight experiments were undertaken; duplicate shocks DO depletion, influent ammonia increases, allylthiourea (ATU) shocks and sodium azide (NaN3) shocks were conducted on a pilot-scale activated sludge plant which consisted of a 315 L completely mixed aeration tank and 100 L clarifier. The process performed well during pre-shock stable operation; ammonia removals were up to 97.8% and N2O emissions were of low variability (<0.5 ppm). However, toxic shock loads produced an N2O response of a rise in off-gas concentrations ranging from 16.5 to 186.3 ppm, followed by a lag-time ranging from 3 to 5 h ((0.43-0.71) × HRT) of increased NH3-N and/or NO2 in the effluent ranging from 3.4 to 41.2 mg L−1. It is this lag-time that provides the early warning for process failure, thus mitigating action can be taken to avoid nitrogen contamination of receiving waters.  相似文献   

8.
The potential of a natural wetland as a site for nitrogen removal from secondary treated effluent was examined by investigating the distribution of denitrification rates and activity in soils and decaying plant material. Field measurements of soil Eh, pH and temperature showed that the effluent inflow favours denitrification by lowering Eh, maintaining pH 6.4–6.7, and raising soil temperature. Analysis of soil concentrations of nitrate plus nitrite and ammonium ions shows that the effluent inflow increased the concentrations of inorganic nitrogen in the soil, and encouraged higher rates of denitrification. Denitrification rates measured by an acetylene blockage technique were highest in soil samples from downstream of the effluent inflow, with the maximum rates being recorded in soils from 0 to 60 cm and in decaying plant material lying on the soil surface. Both nitrate plus nitrite concentration and denitrification activity declined rapidly below 6 cm in upstream and downstream soil samples. Denitrification rates in the natural wetland are increased by the addition of secondary treated effluent, and make a year-round contribution to the removal of nitrogen from the wastewater. Rates of nitrogen removal in the wetland could be increased by encouraging greater spatial and temporal interaction of the effluent amended water with the sites of highest denitrification activity.  相似文献   

9.
The aim of this study was to detect and characterise melanoidin in sewage treatment plant (STP) effluent, and to study the ability of alum coagulation to remove the colour and dissolved organic nitrogen (DON) associated with melanoidin. The melanoidin is non-biodegradable due to the complex cyclic based structure and thus it directly contributes to effluent nitrogen concentrations from the sewage treatment plant (STP). Lowering of effluent total nitrogen limits and the link between colour and chlorinated disinfection by-products have therefore driven a need to understand the structure, properties and treatability of DON species found in STP effluent.The focus of this paper is the refractory coloured, organic nitrogen compound melanoidin. Wetalla STP effluent has relatively high colour (170 mg-PtCo L−1) and DON (2.5 mg L−1) for a biological nutrient removal STP, owing to an industrial supply of melanoidin containing molasses fermentation wastewater. Alum coagulation jar tests were performed on synthetic melanoidin solution, STP effluent containing melanoidin (Wetalla, Toowoomba, Australia) and STP effluent free of melanoidin (Merrimac, Gold Coast, Australia) to examine the treatability of melanoidin and its associated colour and DON content when present in STP effluent.The removal of melanoidin from STP effluent resulted in significant colour and DON reduction. An alum dose of 30 mg L−1 as aluminium was sufficient to reach maximum removal of colour (75%), DON (42%) and dissolved organic carbon (DOC) (30%) present in melanoidin containing STP effluent. Alum was shown to preferentially remove DON with a molecular weight >10 kDa over small molecular weight DON. Fluorescence excitation-emission matrix examination of the humic compounds present in the STP effluent indicated that melanoidin type humic compounds were more readily removed by alum coagulation than other humic compounds.  相似文献   

10.
The occurrence and spread of multi-drug resistant bacteria is a pressing public health problem. The emergence of bacterial resistance to antibiotics is common in areas where antibiotics are heavily used, and antibiotic-resistant bacteria also increasingly occur in aquatic environments. The purpose of the present study was to evaluate the impact of the wastewater treatment process on the prevalence of antibiotic resistance in Acinetobacter spp. in the wastewater and its receiving water. During two different events (high-temperature, high-flow, 31 °C; and low-temperature, low-flow, 8 °C), 366 strains of Acinetobacter spp. were isolated from five different sites, three in a wastewater treatment plant (raw influent, second effluent, and final effluent) and two in the receiving body (upstream and downstream of the treated wastewater discharge point). The antibiotic susceptibility phenotypes were determined by the disc-diffusion method for 8 antibiotics, amoxicillin/clavulanic acid (AMC), chloramphenicol (CHL), ciprofloxacin (CIP), colistin (CL), gentamicin (GM), rifampin (RA), sulfisoxazole (SU), and trimethoprim (TMP). The prevalence of antibiotic resistance in Acinetobacter isolates to AMC, CHL, RA, and multi-drug (three antibiotics or more) significantly increased (p < 0.01) from the raw influent samples (AMC, 8.7%; CHL, 25.2%; RA, 63.1%; multi-drug, 33.0%) to the final effluent samples (AMC, 37.9%; CHL, 69.0%; RA, 84.5%; multi-drug, 72.4%), and was significantly higher (p < 0.05) in the downstream samples (AMC, 25.8%; CHL, 48.4%; RA, 85.5%; multi-drug, 56.5%) than in the upstream samples (AMC, 9.5%; CHL, 27.0%; RA, 65.1%; multi-drug, 28.6%). These results suggest that wastewater treatment process contributes to the selective increase of antibiotic resistant bacteria and the occurrence of multi-drug resistant bacteria in aquatic environments.  相似文献   

11.
A comparison of time-weighted average pharmaceutical concentrations, loadings and enantiomer fractions (EFs) was made among treated wastewater from one rural aerated lagoon and from two urban tertiary wastewater treatment plants (WWTPs) in Alberta, Canada. Passive samplers were deployed directly in treated effluent for nearly continuous monitoring of temporal trends between July 2007 and April 2008. In aerated lagoon effluent, concentrations of some drugs changed over time, with some higher concentrations in winter likely due to reduced attenuation from lower temperatures (e.g., less microbially mediated biotransformation) and reduced photolysis from ice cover over lagoons; however, concentrations of some drugs (e.g. antibiotics) may also be influenced by changing use patterns over the year. Winter loadings to receiving waters for the sum of all drugs were 700 and 400 g/day from the two urban plants, compared with 4 g/day from the rural plant. Per capita loadings were similar amongst all plants. This result indicates that measured loadings, weighted by population served by WWTPs, are a good predictor of other effluent concentrations, even among different treatment types. Temporal changes in chiral drug EFs were observed in the effluent of aerated lagoons, and some differences in EF were found among WWTPs. This result suggests that there may be some variation of microbial biotransformation of drugs in WWTPs among plants and treatment types, and that the latter may be a good predictor of EF for some, but not all drugs.  相似文献   

12.
Industrial and urban discharges release organic contaminants which might affect the quality of receiving waters if not properly eliminated in Wastewater Treatment Plants (WWTP). This study is aimed to evaluate the source, transport and fate of contaminants of industrial origin in a sewage grid discharging to a WWTP and finally to the sea. The sampling network covered an industrial and urban area and wastewaters, influents and effluents of a WWTP were analyzed using a newly developed multiresidual method to capture a wide range contaminants (phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs). Alkylphenols and phthalates followed by PAHs were the main compounds detected at levels between 0.01 to 698 µg l− 1 in the sewage pipelines. At the WWTP influent they were detected at concentrations up to 345 µg l− 1. The contaminant load was eliminated in a 64-92% during the primary and secondary treatment of the plant. However, alkylphenols, phthalates bisphenol A and traces of PAHs were discharged with the effluent, producing a total net input of 825 g d− 1 to the sea. The study of wastewaters herein proposed can be used to better predict the loads into WWTP to improve treatment conditions according to specific sewage inputs and to assess the risks associated with the continuous discharge of contaminants to receiving plants.  相似文献   

13.
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrification and subsequent autotrophic denitrification were carried out in MBfR with pure oxygen and hydrogen supply, respectively, in order to remove nitrogen without the use of heterotrophic bacteria. Excessive biomass accumulation is typically the major cause of system failure of MBfR. No biomass accumulation was detected in the nitrification reactor as low-level discharge of solids from the system balanced out biomass generation. The average specific nitrification rate during 250 days of operation was 1.88 g N/m2 d. The subsequent denitrification reactor, however, experienced decline of performance due to excessive biofilm growth, which prompted the implementation of periodic nitrogen sparging for biofilm control. The average specific denitrification rate increased from 1.50 g N/m2 d to 1.92 g N/m2 d with nitrogen sparging, over 190 days thus demonstrating the feasibility of stable long-term operation. Effluent suspended solids increased immediately following sparging: from an average of 2.5 mg/L to 12.7 mg/L. This periodic solids loss was found unavoidable, considering the theoretical biomass generation rates at the loadings used. A solids mass balance between the accumulating and scoured biomass was established based on the analysis of the effluent volatile solids data. Biofilm thickness was maintained at an average of 270 μm by the gas sparging biofilm control. It was concluded that biomass accumulation and scouring can be balanced in autotrophic denitrification and that long-term stable operation can be maintained.  相似文献   

14.
This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations > 0.1 mg-P l− 1. Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important with regards to the European Union Water Framework Directive, eutrophication and river water quality.  相似文献   

15.
The performance of an on site sewage treatment and disposal system consisting of a septic tank, a gravel filter, a sand filter and soil absorption trenches operated alternatively, was studied in relation to organic matter and nitrogen removal efficiency. The system was simulated with the aid of a laboratory scale model. BOD5 and SS removal efficiencies averaged 92.9 and 93.4% respectively. Substantial removal of nitrogen (up to 70%) was achieved due to nitrification followed by denitrification. Removal efficiencies were found to depend on the compaction characteristics of the filter media and the soil, the hydraulic loading applied and the flow conditions (saturated/unsaturated). The results indicate that the system under consideration is a feasible alternative for on site treatment and disposal of domestic sewage.  相似文献   

16.
The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000 km2 scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP > 100 μg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP + DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total.Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the “diffuse” term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels.The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.  相似文献   

17.
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L−1 and 2.13 ± 0.05 mg N L−1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.  相似文献   

18.
Integrated kraft pulp and paper mill wastewater was characterized before (influent) and after (effluent) the activated sludge process by microfiltration (8, 3, 0.45 and 0.22 μm) and ultrafiltration (100, 50, 30 and 3 kDa) into different size fractions. Wood extractives, lignin, suspended solids and certain trace elements were determined in each fraction. Forty four percent of the resin and fatty acids in the influent (12.8 mg/L) occurred in particles (>0.45 μm), 20% as colloids (0.45 μm-3 kDa) and 36% in the <3 kDa fraction. The corresponding values for sterols (1.5 mg/L) were 5, 46 and 49%. In the effluent, resin and fatty acids (1.45 mg/L) and sterols (0.26 mg/L) were mainly present in the <3 kDa fraction, as well as a small proportion in particles. β-sitosterol was present in particles in the effluent (88 ± 50 μg/L). Lignin in the influent was mainly in the colloidal and <3 kDa fractions, whereas in the effluent it was mainly in the <3 kDa fraction. Thus the decrease of lignin in the biological treatment was concentrated on the colloidal fraction. In the influent, Mn, Zn and Si were mainly present in the <3 kDa fraction, whereas a significant proportion of Fe and Al were found also in the particle and colloidal fractions. In the effluent, Fe and Al were mainly present in the colloidal fraction; in contrast, Mn, Zn and Si were mainly in the <3 kDa fraction. The results indicated that the release of certain compounds and elements into the environment could be significantly decreased or even prevented simply by employing microfiltration as a final treatment step or by enhancing particle removal in the secondary clarifier.  相似文献   

19.
This study exploited the concept of the minimum/maximum substrate concentrations (MSC values) for identifying proper start-up conditions and achieving stable and low effluent total ammonium nitrogen (TAN) concentrations in suspended-growth short-cut biological nitrogen removal (SSBNR). Calculations based on the MSC concept indicated that SDmax, the TAN concentration above which ammonium-oxidizing bacteria (AOB) are washed out, was around 450 mgTAN/L at the given operating conditions of 2 mg/L of dissolved oxygen and pH 8, while nitrite-oxidizing bacteria (NOB) should be washed out at around 40 mgTAN/L. Therefore, the experimental research was focused on the optimal TAN-concentration range for SSBNR, between 50 and 100 mg/L. Experimental results showed that a nitrification reactor with initial TAN concentration above 450 mg/L did not give a successful start-up. However, two days of starvation, which decreased the TAN concentration in the reactor to 95 mg/L, stabilized the reaction quickly, and stable SSBNR was sustained thereafter with 80 mgTAN/L and 98% nitrite accumulation in the reactor. During stable SSBNR, the removal ratio of chemical oxygen demand per nitrite nitrogen (ΔCOD/ΔNO2-N) for denitrification was 1.94 gCOD/gN, which is around 55% of that required for nitrate denitrification. Based on a clone library, Nitrosomonas occupied 14% of the total cells, while the sum of Nitrobacter and Nitrospira was less than the detection cut-off of 2%, confirming the NOB were washed out during SSBNR. A spiking test that doubled the influent ammonium loading caused the TAN concentration in the reactor to reach washout for AOB, which lasted until the loading was reduced. Thus, a loading increase should be controlled carefully such that the system does not exceed the washout range for AOB.  相似文献   

20.
Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 106 CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 103-105 CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained <20-41 CFU/mL in two of the filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号