首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption, emission, and luminescence excitation spectra of the LiNbO3 crystal doped with 0.5% Pr3+ and 0.8% Yb3+ are presented. Additionally the photoluminescence spectra at high pressure have been measured. Hydrostatic pressures up to 135 kbar were applied with a diamond anvil cell. Absorption of the Pr3+:LiNbO3 crystal is characterized by the strong threshold at about 400 nm, related to the band-to band-transitions and the sharp structure in the visible region attributed to the transitions to 3PJ and 1D2 levels of Pr3+ ion. After the 488 nm excitation the yellow emission related to the 1D23HJ transition of Pr3+ have been observed when the 3P0 emission has not been detected. The excitation spectra of the 1D2 luminescence consist of the sharp lines related to the 3H43PJ (J=0, 1, 2) transitions and two broad bands peaked at 340 and 400 nm related probably to the bound exciton. The 1D23HJ emission shifts with pressure toward the lower energies with the rate of −2.4 cm−1 kbar−1. Additionally, for higher pressures the 1D2 emission is considerably quenched. This is explained as being due to the decrease of the energy of the bound exciton with pressure which results in the higher nonradiative depopulation rate of the 1D2 state.  相似文献   

2.
Optical absorption and emission spectra of YVO4 crystal containing 1 at.% of praseodymium have been measured at 4.2 and 300 K. Absorption spectra recorded with polarised light at 4.2 K are found to be strongly inhomogeneously broadened but generally consistent with selection rules for D2d local symmetry except for the 3H4(1)−3F2 transition.

Extensive vibronic side-bands of electronic lines corresponding to transitions from the ground 3H4(1) state to the 3P0 and 3P1 states have been observed. Luminescence decay curves have been recorded at several temperatures between 4.2 and 300 K. Strong dependence of the 1D2 lifetime on sample temperature and lack of the 3P0 emission at any temperature between 4.2 and 300 K has been discussed.  相似文献   


3.
The energy-transfer mechanisms and frequency upconversion emissions in 0.5Er3+/xHo3+ co-doped tellurite glasses by exciting at 980 nm have been investigated. Three intense upconversion luminescence emissions are observed at around 525, 548, and 660 nm, which correspond to Er3+:2H11/2 → 4I15/2, Er3+:4S3/2 → 4I15/2 + Ho3+:5S2(5F4) → 5I8, and Er3+:4F9/2 → 4I15/2 + Ho3+:5F5 → 5I8 transitions, respectively. The upconversion emissions reach the maximum values when Ho2O3 is 0.5 mol%, and the intensities of the green and red light emissions were about 4.5 and 6 times stronger than those un-doped Ho2O3, respectively. The possible upconversion mechanisms and energy transfer between Er3+ and Ho3+ were also estimated and evaluated. All the three emissions are based on two photon absorption processes.  相似文献   

4.
We report the luminescence and upconversion spectra of nanocrystalline YAlO3 doped with trivalent erbium at concentrations of 5.0, 1.0 and 0.1 mol.%. The powder samples were prepared using a solution combustion reaction method, and the resulting YAlO3 nanocrystals show, under wide-angle X-ray diffraction, a size in the range 20–40 nm. Efficient green and red emissions are observed at room temperature under continuous-wave pumping at 980 nm. A weak emission can also be detected in the blue at 410 nm. The upconversion dynamics were studied measuring the decay times and the pump-power dependence of the transitions to the 4I15/2 ground state starting from the 2H11/2, 4S3/2 and 4F9/2 excited states. Excited-state absorption (ESA) is found to be responsible for the higher energy (2H11/2, 4S3/24I15/2) green transitions. On the other hand, for the 4F9/24I15/2 red transition a competing energy-transfer upconversion (ETU) mechanism is found, which accounts for the more than 100-fold increase in intensity of the red emission on passing from the lowest (0.1 mol.%) to the highest (5 mol.%) erbium concentration.  相似文献   

5.
An analysis of the red to ultraviolet wavelength upconversion in Ho3+ in SrLaGa3O7 and SrLaGaO4 crystals is given. Upconverted, ultraviolet emission from the 3D3 level under cw 647 nm excitation at room temperature was observed. Excitation of the 5F5 level, corresponding to the 5I85F5 transition, leads to intense emission from the 5I7, 5I6, 5F5, 5S2, 5F3, 3G5 and 3D3 levels. Based on the energy level diagram of Ho3+, the pump intensity dependencies and experimental time dependencies of the observed emissions, an excitation scheme is proposed.  相似文献   

6.
The luminescence properties of Tm3+ in La1−χTmχTa7O19 solid solutions were examined systematically. The substitution of Tm3+ for La3+ was carried out by a decomposition reaction of nitrates involving the corresponding constituents at 1200 °C in air. X-Ray diffraction patterns of the solid solutions indicated that the crystal structure consisted of a network of (La1−χ3+Tmχstaggered|3+, Ta5+)—O2− polyhedra interstratified with a double layer of Ta5+—O2− polyhedra. According to the excitation and emission spectra, the most intense emission was found near 460 nm and quenched above χ=0.14 in La1−χTmχTa7O19. Also, lifetime results verified that the emission could be assigned not to the transition 1G4 å 3H6, but to the transition 1D2 å3H4. Upon cathode ray excitation some emissions of Tm3+ were superimposed by a broad emission due to the clusters of Ta5+—O2− polyhedra. As a result, a low dimensional arrangement of Tm3+ was much more preferable for getting intense emission because it reduced the energy migration between Tm3+ ions.  相似文献   

7.
The spectroscopic behaviour of the Nd3+ and Yb3+ doped alkaline metal yttrium double phosphates, M3Y1−xLnx(PO4)2 (M=Na, Rb; x=0.01–0.3) were studied for both powder and single crystal samples. The high resolution absorption and emission spectra were measured in the visible and IR regions. Spectral changes with the Nd3+ and Yb3+ concentration were interpreted. The absorption strengths of the 4f–4f transitions were analysed and used to assess the structural modifications of the two double phosphates. Based on the 4 K absorption spectra the number of metal sites occupied by the dopants was investigated.

Strong emission from Na3Y1−xNdx(PO4)2 involving the 4F3/24I9/2,4I11/2,4I13/2,4I15/2 transitions were observed whereas the corresponding emission from the rubidium phosphate was presumably quenched by multiphonon processes due to the water molecules absorbed in the channel-like structure.

The IR spectra were used to assign the vibronic components of the electronic transitions. The Yb3+ emission bands were broadened depending on the Yb3+ concentration (1–10 mol%). The tentative energy level scheme of the ground and excited 2FJ (J=7/2, 5/2) levels was described.  相似文献   


8.
Oriented single crystals of RFe3(BO3)4, with R=La or Nd, have been studied by Raman spectroscopy. Spectra with the relevant polarization configurations have been recorded in order to obtain the symmetry of the observed phonons. The factor group analysis and the correlation with the free (BO3)3− ion are done in order to identify most of the phonons associated with the two different types of (BO3)3− ion present in the crystal. The number and symmetries of the optical Raman active modes are 7A1+19E, among which 4A1+8E can be assigned as mostly due to (BO3)3− vibrations. 7A1+18E modes were observed.

The highest energy peaks have been assigned to the regular planar (BO3)3− and to the three irregular (BO3)3− groups. The two lowest energy peaks of A1 symmetry (around 180 and 300 cm−1) are very probably related to the BO3 rotatory mode and to Fe displacements. R ions do not participate in A1 symmetry modes. The E mode around 90 cm−1 (the lowest frequency mode) is probably due to the R ions which have the longest bonds and are the heaviest ions.  相似文献   


9.
Absorption spectra have been studied in 190–3100 nm region at various temperatures from 16 to 292 K for Yb3+-doped and Yb3+/Nd3+-, Yb3+/Er3+- and Yb3+/Pr3+-co-doped LiNbO3 single crystals before and after γ-irradiation with a dose of 105–107 Gy. Intense 400 and 500 nm absorption bands were observed after γ-irradiation, which are due to the creation of oxygen vacancy (F-type color center) and Nb4+ polaron, respectively. Different change was observed in the 2870 nm OH absorption band intensity among the various rare-earth doped crystals. These are interpreted by discrepancy of ionic radii between substituting rare earth dopant ion and Li+ or Nb5+ host ion. The observed temperature dependence of the hot bands is understood by electronic transition from the thermally populated 2F7/2 Stark levels to the excited 2F5/2 level. The position of the Yb3+ 2F7/22F5/2 first resonant line was observed to be slightly different among the co-doped crystals. This is due to the perturbation of Yb3+ by co-doped rare earth ion which is located at the neighborhood of theYb3+.  相似文献   

10.
A large and transparent Yb3+:GdYCOB crystal with dimensions up to 30 mm× 58 mm have been grown by the Czochralski method. The spectral properties of Yb3+:GdYCOB crystal has been investigated. The absorption cross-section (σa) is 1.65 × 10−20 cm2 at 977 nm. The emission cross-section (σe) is 0.25 × 10−20 cm2 with an FWHM of 37.2 nm at 1020 nm. The fluorescence lifetime is 3.00 ms.  相似文献   

11.
In the present work, the spectroscopic and magnetic properties of heteronuclear Cu:Pr squarate are reported. Single crystals of [Pr2Cu(C4O4)4(H2O)16]·2H2O were obtained by reaction of squaric acid, praseodymium chloride and copper chloride in water solution according to the procedure described earlier. The crystals of title compound are isomorphic with [La2Cu(C4O4)4(H2O)16]·2H2O crystal, where squarate anions participate as bridging ligands between metal ions.

The UV region of absorption spectra of the title compound is dominated by C–T band of Cu(II), f–d transition of Pr(III) and internal π–π*(A1g→Eu) and π–π*(A1g→Eg) ligand transitions. In visible and IR regions, t2g–eg of copper Cu(II) as well as 3H43PJ, 1D2, 1G4, 3FJ, 3H6 Pr(III) transitions at 293 and 4 K were recorded. At low temperature splitting given by Jahn–Teller effect can be observed. Significant anisotropy of d–d transitions intensities confirms well the Jahn–Teller effect, too. Unexpectedly high intensity of 3H41G4 transition is probably due to the intensity borrowing from the Cu (II) d–d transition.

The 3P0 and 1D2 emission of Pr(III) in the [Pr2Cu(C4O4)4(H2O)16]·2H2O crystals is quenched even at 77 K. Whereas emission of appropriate polynuclear europium squarate was detected. The pathways of excited state quenching by eg levels of Cu(II), multhiphonon relaxation and concentration quenching can be considered in the system under studies. Magnetic susceptibility measurements were carried out in 300–1.7 K temperature range and are discussed in relation to the structure.

Effect of the polymeric structure on spectroscopic behaviour is presented. Selectivity of polymeric europium squarate in vitro test for different tumor cells is shown.  相似文献   


12.
Two novel polyphosphides, NaP5 and CeP5, were prepared in a BN crucible by the reaction of elemental components under a high pressure of 3 GPa at 800–950 °C. The X-ray structural analysis showed that NaP5 crystallizes in an orthorhombic space group Pnma with a=10.993(2) Å, b=6.524(1) Å, c=6.903(1) Å, Z=4 and CeP5 in the monoclinic group P21/m with a=4.9143(5) Å, b=9.6226(8) Å, c=5.5152(4) Å, β=104.303(6)°, Z=2. The crystal structure of NaP5 consists of a three-dimensional framework 3[P5]1− constructed by P---P bonds among four crystallographically inequivalent phosphorus sites, with large channels hosting the sodium cations, while CeP5 is a layered compound containing 2[P5]3− polyanionic layers that are separated by Ce3+ ions. NaP5 exhibits the diamagnetic behavior, while the temperature-dependent magnetic susceptibility of CeP5 essentially follows the Curie–Weiss law.  相似文献   

13.
This paper reports the spectroscopic properties of cerium- and praseodymium-doped alkali metal yttrium double phosphates, M3Y(PO4)2:Pr3+, Ce3+; M = Na, Rb. These phosphates were obtained by a solid state reaction between lanthanide phosphate hydrates and M3PO4. The absorption, reflection, emission and excitation spectra were measured at room temperature, 77 and 4 K in the IR-vis-ultraviolet (UV) range. For both the Ce3+- and Pr3+-doped double phosphates, the 4fN↔4fN−15d transitions were detected. For the Pr3+-doped double phosphates, the 4f–4f transitions from the 3H4 ground manifold were analyzed. The low temperature 3H43P0 absorption spectra were used to characterize the structural modifications between the sodium and rubidium salts. For the Ce3+-doped double phosphate, the strong blue 5d1→4f1 emission band splits into two components due to the 2F5/22F7/2 splitting of the 4f1 configuration. Intense emission occurs mainly from the 3P0 level at high dopant concentrations, since the 1D2 emission is strongly quenched but was detected at the 2 mol% doping level. In spite of the forbidden 4f–4f character, the 3P0 transitions have very short decay times, of the order of one μs. Dynamics of the excited states will be discussed based on the decay times and selective excited emission.  相似文献   

14.
Europium doped phosphors Ca3La3(BO3)5 were first synthesized by a sol–gel process technique. The reaction temperature of the sol–gel process was 300 °C lower than that of the solid-state reaction and the reaction time of the sol–gel process was shorter. The photoluminescence properties of Eu3+ doped Ca3La3(BO3)5 indicated that the phosphors exhibited a strong luminescence of 5D07F2 transition at 612 nm under the excitation at 237 nm. The emission intensity of the phosphors prepared by the sol–gel process was higher than those prepared by the solid-state reaction. The relationship between optical properties and morphologies were studied. In particular, Li+ ion doping effectively enhanced the luminescent properties of the Eu3+ doped Ca3La3(BO3)5 phosphors. The highest brightness was observed in the phosphor Ca3La2.82Eu0.1Li0.08B5O15−δ prepared by the sol–gel process.  相似文献   

15.
The single-phase low-temperature cubic form of KGdF4, with the average crystallites size of 19 nm precipitates from a solution. The cubic phase is stable up to approximately 460 °C. At higher temperatures the cubic KGdF4 transforms, first to the orthorhombic and then to the trigonal phase, however, the transformation is not complete and the cubic form is still present. The highest concentrations of orthorhombic and trigonal phases were observed at temperatures of 540 and 720 °C, respectively. The single-phase high-temperature cubic form of KGdF4 was obtained when the as-received sample was heated at 790 °C. In contrast to a coprecipitation (CP) method, the single-phase orthorhombic modification of KGdF4 was obtained by a solid state (SS) reaction conducted at 650 °C. In excitation spectra recorded for CP samples the characteristic Eu3+–O2− CT bands expected at 260 nm are not present, which indicates that oxygen impurities are practically absent. However, both IR spectra and the 5D1,2,3/5D0 emission branching ratio points to the presence of OH groups incorporated into a fluoride lattice and a heat treatment at temperature of at least 650 °C is indispensable to get rid of them. Emission spectra for samples with different processing conditions were recorded and are discussed.  相似文献   

16.
The subsolidus phase relations of the system Y2O3–Na2O–B2O3 are reported. There are seven binary compounds and two ternary compounds in this system. A new ternary compound Na2Y2B2O7 is identified. The structure has been determined for the compound Na2Y2B2O7 from powder X-ray diffraction. The lattice constants of P21/c for the compound Na2Y2B2O7 are a=10.5993(1) Å, b=6.2311(1) Å, c=10.2247(1) Å, β=117.756(1)° and z=4. The structure can be described as being made up of isolated BO3 triangles and YO8 polyhedra. The photoluminescence properties of Eu ion-doped Na2Y2B2O7 and Na3Y(BO3)2 show strong red-emission of the 5D07F2 transitions at 611 and 615 nm, respectively. The results of emission spectra are in good agreement with the crystallographic study. The relationship between Eu ion content and emission intensity is analyzed too.  相似文献   

17.
We present experimental results demonstrating high-speed storage and retrieval of 500 single-page time-domain holograms in an Eu3+:Y2SiO5 crystal. The holograms were stored in the inhomogeneously broadened 7F05D0 transition of the crystal by wavelength multiplexing at a temperature of 2.5 K. Each hologram occupied a narrow spectral channel of around 500 kHz and was separated from its adjacent channels by only around 700 kHz. Both the recording and playback of the holograms were performed at a speed of 30 frames s−1 with the use of a 100 mW cw laser. The experimental results project an achievable frame transfer speed in excess of 13×103 frames s−1. Implications of the results for high-speed digital data storage are discussed.  相似文献   

18.
A new compound LuBa3B9O18 has been prepared by a high-temperature solid-state reaction and its crystal structure was determined by powder X-ray diffraction methods. The results of Rietveld refinement show that it is isotypic to YBa3B9O18. The X-ray excited luminescent properties of LuBa3B9O18 were investigated. It shows a broad emission band in the wavelength range of 300–550 nm with peak center at 385 nm. Its room temperature fluorescent decay profile exhibits a single-exponent shape with decay time of 15 ns. It is believed that the lattice defects have played an important role on the luminescent performances of LuBa3B9O18 powders and its thermal luminescence measurement confirmed the existence of lattice defects in it. Considering the emission wavelength, luminescence intensity, decay time, melting point, density and non-hygroscopic property of LuBa3B9O18, one has reason to assume that it might find an application as a new scintillation material.  相似文献   

19.
The paper reports on the course of decomposition of hydrated lutetium nitrate and lutetium chloride to Lu2O3 in the eutectic mixture of NaNO2 and KNO2. It was shown that a crystallographically pure phase of the cubic Lu2O3 is formed at temperature as low as 250 °C. IR spectra revealed that the recovered powder contains some OH-contamination, however. The powders are characterized by crystallites sizes in the range of 18–30 nm in average. Emission and excitation spectra of Eu-doped powders show characteristic features for Eu3+ ion in an oxide host, which indicates that the procedure is appropriate for making activated nanoparticulate oxide phosphors. Most profound emission appears around 611 nm and the luminescence from the powder made starting with Lu(NO3)3 was noticeably higher compared to the product obtained from LuCl3. The excitation spectrum of Eu3+ emission at 611 nm contains a band related to the fundamental absorption of the lutetia host lattice, which indicates an existence of the host-to-activator energy transfer.  相似文献   

20.
Investigations of phase relations in the Ba-rich part of the In2O3–BaO(CO2)–CuO pseudo-ternary system at 900 °C have revealed the existence of new indium–copper oxycarbonate – Ba4In0.8Cu1.6(CO3)0.6O6.2. Rietveld refinement of the X-ray powder diffraction data combined with infrared studies gives evidence that this phase is a oxycarbonate crystallising in the tetragonal structure (space group I4/mmm) with unit cell parameters: a=4.0349(1) Å and c=29.8408(15) Å. In the binary part of the In2O3–BaO(CO2) system we have identified the occurrence of Ba4In2−x(CO3)1+xO6−2.5x oxycarbonate solid solution showing a crystal structure also described by I4/mmm space group, but with the unit cell parameters: a=4.1669(1) Å and c=29.3841(11) Å for x=1. The existence range of this phase, −0.153<x<0.4, includes chemical compositions of earlier found phases: Ba5In2+xO8+0.5x with 0≤x≤0.45 (known as the -solid solution), as well as the binary Ba4In2O7 phase. The crystal structures of both new oxycarbonates are isomorphic and related to n=3 member of the Ruddlesden–Popper family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号