首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ternary InSb–NiSb–Sb system has been studied by X-ray diffraction and by potentiometry. The electromotive forces (EMF) have been measured in the temperature range 640<T/K<860 by using the following galvanic cell:
with x (0.075<x<0.498) and y (0<y<0.359). The investigated samples are located on the following lines of the Gibbs triangle: InSb–Ni0.33Sb0.66, InSb–Ni0.48Sb0.52, InSb–NiSb, Sb–(InSb)0.75(NiSb)0.25, Sb–(InSb)0. 5(NiSb)0.5, Sb–(InSb)0.25(NiSb)0.75. From these measurements, the values of the partial molar thermodynamic functions (Δμ°m,In, ΔH°m,In, ΔS°m,In) (data at reference pressure p0=105 Pa), for the liquid InSb alloy, for the three solid heterogeneous regions InSb–NiSb2–Sb, InSb–NiSbδ?–NiSb2, InSb–NiSbδ, for six ternary liquid–solid alloys, have been calculated.  相似文献   

2.
Gallium activity in the B2 phase regions of both binary Co–Ga and ternary Co–Ga–Sb systems was measured by EMF method with stabilized zirconia solid electrolyte The temperature range was 1073–1273 K and Sb concentrations were 1, 2 and 3 mol fractions. Ga activity at 1173 and 1273 K increases sharply in Ga rich region and the addition of Sb to the CoGa phase increases Ga activity. Activity change corresponds to the lattice parameter change with Sb addition to the CoGa phase.  相似文献   

3.
4.
The activities of manganese in Mn–Ni–C alloys have been studied by solid-state galvanic cell technique with CaF2 as the solid electrolyte. The measurements of electromotive force (EMF) have been carried out in the temperature range 920–1240 K. The main phase compositions of the alloys have been analyzed by X-ray diffraction (XRD). It was established that the substitution of Mn by Ni in the (MnNi)23C6 carbide was limited, that the lattice parameter decreased slightly with increase in the Ni content and that a solid solution is formed between Mn and Ni. It was also found that the activity of manganese decreases with increase in the nickel content when the ratio of C/(Mn+C) is less than 8.3 wt.%, and that the negative effect of Ni on the activity of Mn in Mn–Ni–C ternary system decreases as the carbon content increases. However, when the ratio of C/(Mn+C) is equal to 8.3 wt.% or more, the activity of manganese is independent of the nickel content.  相似文献   

5.
Efforts to improve the high temperature behavior of MoSi2 in oxidizing environments led to the investigation of the Mo–Ru–Si phase diagram. The isothermal section at 1673 K was determined by X-ray diffraction, optical and scanning electron microscopies and EPMA. Five new silicides were identified and their crystallographic structure was characterized using conventional and synchrotron X-ray as well as neutron powder diffraction. Mo15Ru35Si50, denoted α-phase, is of FeSi-type structure, space group P213, a=4.7535 (5) Å, Dx=7.90 g. cm−3, Bragg R=7.13. Mo60Ru30Si10 is the ordered extension of the Mo70Ru30 σ-phase with space group P42/mnm, a=9.45940(8) Å, c=4.94273(5) Å, Dx=6.14 g. cm−3, Bragg R=5.75.  相似文献   

6.
7.
In this paper, an assessment of the binary Ru–Zr and Hf–Ru systems is presented. The thermodynamic evaluation is based on diagrammatic investigations and high-temperature calorimetric measurements for the formation of the three intermediate compounds. The present work proposes thermodynamic modeling of the binaries calculated according to the CALPHAD method and carried out using the PARROT module in the Thermo-Calc software. The liquid phase and the solution phases (Ru)-HCP-A3, (Zr)-HCP-A3, (βZr)-BCC-A2, (Hf)-HCP-A3 and (βHf)-BCC-A2 are treated as substitutional solutions. The intermetallic Laves phase Ru2Zr-C14 is modeled with the sublattice formalism. The RuZr-B2 and HfRu-B2 phases are treated as ordered phases originating, respectively, from (βZr)-BCC-A2 and (βHf)-BCC-A2 disordered phases. Considering the relative uncertainty of experimental data due to high temperatures, a good agreement is obtained between calculated and experimental phase diagrams. The optimized set of coefficients and the calculated isothermal section are provided.  相似文献   

8.
G. Shao   《Intermetallics》2001,9(12):1063-1068
The Re–Si system is assessed thermodynamically, using the CALPHAD method. The calculated phase diagram and thermodynamic properties are in good agreement with available experimental data. Calculated enthalpies and entropies of fusion are compared with available data for other transition metal silicides, against melting points, showing good agreement with the general trends. This is a useful approach for thermodynamic assessment of alloy systems, where experimentally measured thermodynamic data are limited. The stability of the amorphous phase in this system has also been discussed.  相似文献   

9.
In this paper we use the concept of ordering potential to calculate the atomic structure and the thermodynamic asymptotic limit of the liquid Al–Ge alloy, for which we previously measured the atomic structure and the electrical resistivity. The sign of the ordering potential in the region of the first nearest neighbours indicates whether the alloy is homo or hetero-coordinated. The aim of this work is to reproduce quantitatively the atomic structure by using the simple phenomenological Silbert-Young effective potential. This model can explain both the shape of the structure factor measured by neutron diffraction and the low-angle limit of the Bhatia–Thornton partial structure SCC(q) given by thermodynamic measurements.  相似文献   

10.
The influence of structural, elastic properties, thermodynamics and electronic properties Al-Y alloy were investigated by using first-principles. The equilibrium lattice constant, elastic constants, and elastic modulus as calculated here agree with results of previous studies. Calculated results of bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio v and Debye temperature all increase as pressure increase, but the opposite is true for heat capacity cp. In addition, the Debye temperature for the phases reduces gradually as follows: Al2Y > Al3Y> AlY. Additionally, the G/B ratio indicates that AlY and Al3Y are ductile materials, while Al2Y is a brittle material, and that the ductility of AlY and Al3Y can be improved with increased pressure, while the brittleness of Al2Y does not improve with increased pressure. Finally, the paper presents and discusses calculations of density of states and charge populations as they are affected by pressure.  相似文献   

11.
12.
The structural, elastic, thermodynamic and electronic properties of L12-ordered intermetallic compounds Ni3X (X = Al, Ga and Ge) under pressure range from 0 to 50 GPa with a step of 10 GPa have been investigated using first-principles method based on density functional theory (DFT). The calculated structural parameters of Ni3X at zero pressure and zero temperature are consistent with the experimental data. The results of bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio v, anisotropy index AU and Debye temperature ΘD increase with the increase of external pressure. In addition, the Debye temperature of these compounds gradually reduce as the order of Ni3Al > Ni3Ga > Ni3Ge. The ratio of shear modulus to bulk modulus G/B shows that the three binary compounds are ductile materials, and the ductility of Ni3Al and Ni3Ga can be improved with pressure going up, while Ni3Ge is opposite. Finally, the pressure-dependent behavior of density of states, Mulliken charge and bond length are analyzed to explore the physical origin of the pressure effect on the structural, elastic and thermodynamic properties of Ni3X.  相似文献   

13.
The vaporisation of Fe–Al and Ni–Al alloys has been investigated in the temperature range 1140–1600 K and 1178 to 1574 K, respectively, by Knudsen effusion mass spectrometry (KEMS). Eleven different Fe–Al and also eleven Ni–Al compositions have been investigated in the composition ranges 30–51 at.% Al and 38–53 at.% Al, respectively. The Fe–Al samples have been investigated mostly in the B2 region of the phase diagram. The partial pressures and thermodynamic activities were evaluated directly from the measured ion intensities formed from the equilibrium vapour over the alloy and the pure element. From the temperature dependence of the activities the partial and integral molar enthalpies and entropies of mixing have been obtained. These are the most accurate data obtained by mass spectrometry on Fe–Al and Ni–Al systems so far. Nearly temperature independent integral enthalpies and entropies of mixing over the wide temperature range investigated were found, with the mixing entropies being large and negative.  相似文献   

14.
Binary diffusion couples, in which one single-phased product layer is growing between pure elements, were employed to study the diffusion properties of Au2Bi- and AuSb2-intermetallics at 230 and 330 °C. The position of the Kirkendall-marker plane inside the reaction zones revealed that in this temperature range the minority element is the faster diffuser in the Laves-phase Au2Bi as well as in AuSb2. The concept of integrated diffusion coefficient is used to describe the growth kinetics of the intermetallic compounds. The integrated diffusion coefficient in an intermetallic is related to the tracer diffusivities of the components and the thermodynamic stability of the phases involved in the interaction. The tracer diffusion coefficients were deduced from the interdiffusion experiments. The isothermal cross-section through the ternary phase diagram Au–Sb–Bi at 230 °C was constructed by means of the diffusion couple technique. No ternary phases are found in this system. Both intermetallic compounds Au2Bi and AuSb2 are in equilibrium with the (Sb,Bi)-solid solution. The solubility of Sb in the Laves-phase Au2Bi was found to be negligible. Up to about 10.5 at.% of Bi can be dissolved in the AuSb2-phase, the Bi-atoms substituting Sb in the cubic lattice of AuSb2.  相似文献   

15.
The electrochemical behaviour of new Mg–Al–RE (RE = Ce, Er) alloys AE91 was investigated in 0.01 M NaCl electrolyte (pH = 12) and compared with that of the most commonly used Mg alloy in the automotive field, the AZ91D. Scanning electron microscopy and quantitative electron probe microanalysis were used to characterize the samples prior to the electrochemical tests. AE91 alloys showed very similar microstructures characterized by a three-phase appearance: a Mg-based solid solution containing only Al and two intermetallic phases γ(Mg17Al12) and (Al1 − xMgx)3Ce or (Al1 − xMgx)2Er. Free corrosion potential measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy revealed improved passivity behaviour compared to AZ91D alloy. The apparent presence of trace amounts of rare earth oxides in the passive film is presumed to be the reason for the enhanced corrosion resistance of AE91 alloys in the aggressive environment considered.  相似文献   

16.
An energetics database of binary magnesium compounds has been developed from first-principles calculations. The systems investigated include Mg–X (X = As, Ba, Ca, Cd, Cu, Dy, Ga, Ge, La, Lu, Ni, Pb, Sb, Si, Sn and Y). The calculated lattice parameters and enthalpies of formation of binary compounds in these systems are compared with both experimental data and thermodynamic databases.  相似文献   

17.
Electrochemical measurements and friction measurements during continuous and intermittent unidirectional sliding tests are used to monitor and to evaluate the surface characteristics of two types of metallic materials characterized by a huge unit cell, namely Al71Cu10Fe9Cr10 and Al3Mg2. The modification of the surface characteristics results from the periodic mechanical removal of a surface film during sliding, and the subsequent (electro)chemical re-growth of a surface film in-between successive sliding contacts. Al71Cu10Fe9Cr10 and Al3Mg2 materials were tested in a phosphate buffer solution pH 7 at 25 °C to compare their depassivation and subsequent repassivation behaviour. The Al3Mg2 material was also tested in a 0.1 M KOH solution pH 13 and 25 °C to reveal the role of constituting metallic elements on the surface film formation. The effect of film formation and removal on the coefficient of friction recorded during unidirectional sliding is discussed.  相似文献   

18.
The structural, elastic and thermodynamic properties of FeB, Fe2B, orthorhombic and tetrahedral Fe3B, FeB2 and FeB4 iron borides are investigated by first-principle calculations. The elastic constants and polycrystalline elastic moduli of Fe–B compounds are usually large especially for FeB2 and FeB4, whose maximum elastic constant exceeds 700 GPa. All of the six compounds are mechanically stable. The Vickers hardness of FeB2 is estimated to be 31.4 GPa. Fe2B and FeB2 are almost isotropic, while the other four compounds have certain degree of anisotropy. Thermodynamic properties of Fe–B compounds can be accurately predicted through quasi-harmonic approximation by taking the vibrational and electronic contributions into account. Orthorhombic Fe3B is more stable than tetrahedral one and the phase transition pressure is estimated to be 8.3 GPa.  相似文献   

19.
We employ density functional theory (DFT) to calculate pressure dependences of selected thermodynamic, structural and elastic properties as well as electronic structure characteristics of equiatomic B2 FeTi. We predict ground-state single-crystalline Young's modulus and its two-dimensional counterpart, the area modulus, together with homogenized polycrystalline elastic parameters. Regarding the electronic structure of FeTi, we analyze the band structure and electronic density of states. Employing (i) an analytical dynamical matrix parametrized in terms of elastic constants and lattice parameters in combination with (ii) the quasiharmonic approximation we then obtained free energies, the thermal expansion coefficient, heat capacities at constant pressure and volume, as well as isothermal bulk moduli at finite temperatures. Experimental measurements of thermal expansion coefficient complement our theoretical investigation and confirm our theoretical predictions. It is worth mentioning that, as often detected in other intermetallics, some materials properties of FeTi strongly differ from the average of the corresponding values found in elemental Fe and Ti. These findings can have important implications for future materials design of new intermetallic materials.  相似文献   

20.
Phase equilibria of the Cd–Sb–Zn system have been investigated by metallographic examinations, DSC, XRD and WDS measurements. At 250 °C, the ternary diagram shows two three-phase fields, (Zn)+(Cd)+Zn4Sb3 and (Cd)+ Zn4Sb3+(Zn,Cd)Sb. Continuous solid solution has been found between ZnSb and CdSb. Solubility of Cd in Sb3Zn4 was determined to be about 43 at.%. A variant of the reaction scheme is proposed for the Cd–Sb–Zn system to understand phase relations observed at 250 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号