共查询到19条相似文献,搜索用时 140 毫秒
1.
支持向量机(SVM)建模的拟合精度和泛化能力取决于相关参数的选取,目前SVM中的参数的寻优一般只针对惩罚系数和核参数,而混合核函数的引入,使SVM增加了一个可调参数.针对混合核函数SVM的多参数选择问题,提出利用具有较强全局搜索能力的混沌粒子群(CPSO)优化算法对混合核函数SVM建模过程中的重要参数进行优化调整,每一... 相似文献
2.
基于混沌粒子群优化的SVM分类器研究 总被引:5,自引:1,他引:5
支持向量机(SVM)分类器能较好地解决小样本、非线性、高维等分类问题,具有很强的实用性。然而,支持向量机训练参数的选择对其分类精度有着很大的影响。常用的支持向量机优化方法有遗传算法、粒子群算法都存在易陷入局部极值,优化效果较差的不足。为解决上述问题在粒子群优化算法中引入混沌思想,提出了基于混沌粒子群优化算法(CPSO)的SVM分类器优化方法,CPSO算法能提高种群的多样性和粒子搜索的遍历性,从而有效地提高了PSO算法的收敛速度和精度,更好的优化SVM分类器。并以网络异常入侵检测为研究对象进行仿真,实验结果表明,根据混沌粒子群优化的SVM分类器比传统算法优化的SVM分类器的精度高,速度快。 相似文献
3.
支持向量机(SVM)可以很好地用来解决分类问题,参数优化尤其重要。混合核函数的引入,使得SVM又多了一个可调参数。针对该参数用人工或经验的方法获取具有局限性,采用动量粒子群(MPSO)对SVM基本参数、混合可调核参数进行综合寻优,来寻找最佳参数组合。通过UCI数据仿真,对比结果表明:所提优化方法能够快速有效地提取最佳参数组合,所得SVM性能明显提高,分类效果更好。 相似文献
4.
混沌粒子群算法对支持向量机模型参数的优化 总被引:4,自引:1,他引:4
研究支持向量机模型优化问题,支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量很多,在多个参数中进和盲目搜索最优参数是需要极大的时间代价,并且很难得到最优参数.常用的支持向量机优化方法有遗传算法、粒子群算法都存在易陷入局部极值,优化效果较差.为解决支持向量机参数寻优问题,提出一种基于混沌粒子群的支持向量机参数选择方法.将混沌理论引入粒子群优化算法中,从而提高种群的多样性和粒子搜索的遍历性,从而有效地提高了PSO算法的收敛速度和精度,得了优化支持向量机模型.并以信用卡案例数据作为研究对象进行了仿真,实验结果表明,混沌粒子群优化的SVM分类器比传统算法优化的SVM分类器的精度高和更高的效率,应用效果好. 相似文献
5.
陈治明 《计算机工程与应用》2011,47(10):38-40
支持向量机是一种性能优越的机器学习算法,而其参数的选择对建模精度和泛化性能等有着重要的影响,也是目前机器学习研究的一个重要方向。在简要介绍基本粒子群优化(PSO)算法的基础上,提出了一种量子粒子群优化算法,给出了其实现方式,并通过4个基准测试函数进行性能对比评价。基于这种量子粒子群优化算法,对最小二乘支持向量机(LS-SVM)的参数优化进行了研究。仿真结果表明,量子粒子群优化算法能给出很好的优化结果。 相似文献
6.
基于神经网络的粒子群算法优化SVM参数问题 总被引:1,自引:0,他引:1
对支持向量机的核参数选取到目前仍没有形成一套成熟的理论,严重影响了其广泛的应用。对核参数的选取做了一定的探讨。将神经网络与粒子群优化算法相结合并用于支持向量机核函数的参数优化。该方法能够同时具有神经网络较强的非线性拟合能力和粒子群优化算法的寻优能力。数值实验结果表明该算法对支持向量机核参数的优化是可行的、有效的,并且具有较高的分类准确率和较好的推广性能。 相似文献
7.
将径向基核函数和多项式核函数进行线性组合构建了混合核ε-SVM, 克服了单核SVM存在的泛化性能弱、学习能力差等弱点; 为了同时解决普通粒子群算法存在的后期震荡严重、趋同性强和极易陷入局部极小值等问题, 提出了一种改进的PSO算法, 并给出了其数学模型和算法流程。该算法将随机粒子个体极值的追随因子增加至动量项和基本粒子群算法的速度项, 再将增加追随因子后的动量项回植于更新后的速度项, 这样就使得粒子在减缓后期震荡的同时修正了趋同性。通过函数仿真实验和实例验证了所提出的基于改进PSO的混合核ε-SVM算法较其他预测算法具有寻优精度高、收敛速度快、鲁棒性能好和复杂度低等优势。 相似文献
8.
利用粒子群算法优化SVM分类器的超参数 总被引:1,自引:0,他引:1
利用粒子群算法在求解组合优化问题时具有的全局搜索特性,设计并实现了支持向量机分类器中超参数的优选粒子群算法,扼要地叙述了算法实现中个体编码和适应度函数,通过在国际标准数据集上的实验验证了算法的有效性和高效性,最后列举了一些在上述工作基础上可开展的深入性工作。 相似文献
9.
混沌优化算法是一种有效的全局优化算法,其计算复杂度较低,搜索速度快。支持向量机是近年来新兴的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出了突出的优点。但支持向量机的识别性能对于参数的选择是敏感的,提出用混沌优化算法来优化支持向量机的参数,不仅提高了支持向量机的性能,而且解决了传统的选取参数方法计算量大、参数多时难以奏效的问题。仿真结果表明性能较好、计算量较少。 相似文献
10.
地铁中站点客流量为地铁运营调度部门提供实时调度管理依据。将径向基核函数与多项式核函数线性组合,构建了混合核支持向量回归机(SVM)预测模型。采用基于黄金分割的混沌粒子群(GCPSO)对混合核SVM的参数进行寻优,得到最佳的参数组合。利用该混合核SVM预测广州地铁3号线站点短期客流量。结果表明,GCPSO优化的混合核SVM预测模型对地铁站点的短期客流的预测精度高,预测数据和实测数据拟合良好,相对误差较小,明显优于SVM其他三种预测方法及Elman神经网络预测方法。 相似文献
11.
12.
针对模糊c均值聚类算法自适应性不强、易陷入局部极小值及聚类效果不理想等问题,提出一种基于自适应混沌粒子群的聚类算法。对粒子群的加速因子进行动态设置,使粒子搜索机制具有自适应调节的功能;利用混沌扰动优化,使种群的多样性和全局搜索能力得到提高,利用边界缓冲墙对越界粒子进行处理,避免正负粒子飞越边界的干扰。选取 UCI机器学习库中的4种数据样本集进行测试,测试结果表明,该算法具有良好的性能。 相似文献
13.
《国际计算机数学杂志》2012,89(12):2225-2235
This paper applies a novel evolutionary optimization algorithm named quantum-behaved particle swarm optimization (QPSO) to estimate the parameters of chaotic systems, which can be formulated as a multimodal numerical optimization problem with high dimension from the viewpoint of optimization. Moreover, in order to improve the performance of QPSO, an adaptive mechanism is introduced for the parameter beta of QPSO. Finally, numerical simulations are provided to show the effectiveness and efficiency of the modified QPSO method. 相似文献
14.
基于函数变换的改进混沌粒子群优化* 总被引:1,自引:0,他引:1
粒子群在搜索过程中容易陷入局部而无法找到全局最优值,为了解决此早熟问题,提出基于函数变换的改进混沌粒子群优化算法。此方法将Logistic映射和改进的Tent映射引入到粒子群中代替随机数;将函数变换引入到粒子的速度、位置更新过程中以凸显全局最优值与局部极优值的差异,从而使粒子跳出局部极优值点,加细搜索进而找到全局最优值点。数值实验表明,基于函数变换的改进混沌粒子群在搜索时间和效率上要优于标准粒子群和基于Logistic映射的混沌粒子群。改进的算法是可行而有效的。 相似文献
15.
通过算法混合提出了一种改进混沌粒子群优化算法。将混沌搜索融入到粒子群优化算法中,建立了早熟收敛判断和处理机制,显著提高了优化算法的局部搜索效率和全局搜索性能。将改进混沌粒子群优化算法应用于聚丙烯生产调优中,首先建立了聚丙烯最优牌号切换模型,然后采用改进混沌粒子群优化算法求解该最优牌号切换模型。优化结果:表明,与常规混沌粒子群优化算法相比,改进混沌粒子群优化算法具有更佳的优化效率和全局性能。 相似文献
16.
对地观测具有任务繁多、约束复杂、资源有限等特点,对观测资源配置进行合理规划具有重要意义。面向多飞艇多载荷对地观测任务,结合经典粒子群算法,研究了满足任务完成度、分辨率要求和负载均衡度等多目标的资源配置规划方法。在经典粒子群算法的基础上利用混沌优化技术进行改进,并设计实现了原型系统。实验验证了该资源配置规划方法的有效性。 相似文献
17.
一种改进的基于粒子群优化的SVM训练算法 总被引:1,自引:2,他引:1
支持向量机的训练需要求解一个带约束的二次规划问题,但在数据规模很大的情况下,经典的训练算法将会变得非常困难。提出了一种改进的基于粒子群的优化算法,用于替代支持向量机中现有的训练算法。在改进后的粒子群优化算法中,粒子不仅向自身最优和全局最优学习,还以一定的概率向其他部分粒子的均值学习。同时,还引进了自适应变异算子,以降低未成熟收敛的概率。实验表明,提出的改进训练算法相对改进前的算法在性能上有显著提高。 相似文献
18.
针对粒子群优化算法(PSO) 在处理高维复杂函数时容易陷入局部极值、收敛速度慢的缺陷, 从系统的认知分析过程和角度出发, 提出一种基于诺兰模型(NM) 思想的改进PSO 算法. 该算法在Tent 混沌映射选择的参数的基础上, 结合NM信息融合和协调的思想, 在速度更新过程中增加均衡项, 并设计粒子群的欧氏距离指数以防止早熟, 从而实现对粒子的自动调整、保证多样性和提高算法的全局搜索能力. 最后, 运用典型函数对所提出算法进行测试, 并与最新相关算法进行比较, 结果表明, 所提出算法在全局搜索能力、效率和稳定性方面均具有明显的优势.
相似文献19.
支持向量机的参数优化一直是一个重要的研究方向。参数的好坏很大程度上决定了支持向量机的分类精度和泛化能力。针对人工鱼群算法优化支持向量机参数时,容易在后期徘徊于最优解附近、难以逼近的问题,提出了人工鱼群加速算法,使用速度参数代替人工鱼步长,从而求得最优目标并得到SVM的最优参数组合。仿真实验结果表明:该算法收敛速度快,求解数值精度高,对初值的依赖程度低,在SVM参数优化中具有更好的性能、更高的分类准确率,是一个极其有效的参数优化方法。 相似文献