首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A susceptibility gene for hereditary breast-ovarian cancer, BRCA1, has been assigned by linkage analysis to chromosome 17q21. Candidate genes in this region include EDH17B2, which encodes estradiol 17 beta-hydroxysteroid dehydrogenase II (17 beta-HSD II), and RARA, the gene for retinoic acid receptor alpha. We have typed 22 breast and breast-ovarian cancer families with eight polymorphisms from the chromosome 17q12-21 region, including two in the EDH17B2 gene. Genetic recombination with the breast cancer trait excludes RARA from further consideration as a candidate gene for BRCA1. Both BRCA1 and EDH17B2 map to a 6 cM interval (between THRA1 and D17S579) and no recombination was observed between the two genes. However, direct sequencing of overlapping PCR products containing the entire EDH17B2 gene in four unrelated affected women did not uncover any sequence variation, other than previously described polymorphisms. Mutations in the EDH17B2 gene, therefore do not appear to be responsible for the hereditary breast-ovarian cancer syndrome. Single meiotic crossovers in affected women suggest that BRCA1 is flanked by the loci RARA and D17S78.  相似文献   

2.
3.
4.
BACKGROUND: Germline mutations in the tumor suppressor genes BRCA1 and BRCA2 confer substantial increased lifetime risk for breast cancer, and in the case of BRCA1, for ovarian carcinoma as well. These two genes alone account for the vast majority of hereditary breast cancer families. Numerous mutations have been described in each gene, the majority of which are small insertions or deletions resulting in expression of a truncated protein. MATERIALS AND METHODS: Several common mutations can be detected using a polymerase chain reaction-mediated, site-directed mutagenesis assay, which transforms the amplicon derived from either the wild-type or mutant allele by adding or removing a restriction endonuclease site. We screened 49 putative sporadic breast tumors using this methodology, targeting four BRCA1 mutations (185delAG, 5382insC, R1443X, and E1250X) and a single BRCA2 mutation (6174delT). RESULTS: Using the polymerase chain reaction-mediated, site-directed mutagenesis assay, we identified two mutations, namely, a 185delAG mutation (BRCA1) and a 6174delT mutation (BRCA2). Interestingly, these two mutations were found in the same sample. None of the remaining 48 breast tumors showed evidence of these mutations. Allele-specific oligonucleotide probes were then employed in conjunction with the Universal GeneComb Test Kit, which confirmed the presence of mutations. CONCLUSIONS: Our data suggest that the common germline BRCA1 and BRCA2 mutations are infrequently encountered in sporadic breast cancers. The one case with dual BRCA1 and BRCA2 mutations suggests that this tumor may be hereditary in origin, despite the lack of a positive family history. Double heterozygosity for mutations in BRCA1 and BRCA2 may have increasingly significant implications with regard to predisposition to breast cancer.  相似文献   

5.
It is known that nearly 5% of gastric carcinomas arise under the age of 40. To elucidate genetic alterations in these patients, we performed studies using microsatellite assay in 27 gastric cancers under 35 years of age, composed of 5 well and 22 poorly differentiated adenocarcinomas. We detected replication errors (RERs) in 18 (67%) of 27 tumors, but no germline mutation in DNA mismatch repair genes (hMLH1 and hMSH2), except fory 3 somatic mutations in the hMLH1 gene. Loss of heterozygosity (LOH) at D17S855, located on chromosome 17q21 (BRCA1), was detected in 8 (40%) of 20 informative cases. In 12 (44%) of 27 cases, LOH on chromosome 17q12-21 including the BRCA1 was found in several neighboring markers in this region, while no mutation was found in the BRCA1 gene. Four (40%) of 10 scirrhous type gastric cancers exhibited wide allelic deletions on chromosome 17q12-21. These results overall suggest that young gastric cancer patients display highly frequent micro-satellite instability that might be due to defect of DNA repair system rather than hMLH1 and hMSH2. In addition, chromosome 17q12-21 including BRCA1 locus may contain a candidate for tumor suppressor gene, particularly in scirrhous type gastric cancers arising in young patients.  相似文献   

6.
Most familial breast or ovarian cancers are thought to be due to highly penetrant mutations in the predisposing genes BRCA1 and BRCA2. The cloning of these genes has opened a new era for the genetic counseling of women with a family history of breast or ovarian cancer. To estimate the incidence of detectable BRCA1 mutations and to define the eligibility criteria for genetic testing in the Italian population, a total of 53 patients belonging to 46 families clustering multiple cases of breast and/or ovarian cancer were investigated. Seven families presented with ovarian cancer only, 16 had both ovarian and breast cancers, and 23 were characterized by breast cancer only. Using a combination of protein truncation test (PTT) and single strand conformational polymorphism (SSCP) analysis followed, when necessary, by direct sequencing, we found 8 distinct mutations, 2 of these not reported before. Five frameshift and 2 nonsense mutations led to a truncated protein. One mutation was a missense substitution involving a cysteine in the zinc finger domain. One variant creating an ETS binding site in intron I was found but its role was not defined. The percentage of families carrying mutations was 17%. Among the families characterized by ovarian cancer only and by breast and ovarian cancer, the percentage of BRCA1 mutations was 57% and 12.5%, respectively. In contrast, the percentage of altered BRCA1 in families with only breast cancers was 9%. In the 46 Italian families studied, BRCA1 mutations were detected in fewer kindreds than those previously hypothesized based on linkage analysis, especially when these were characterized by breast cancers only. Our results indicate that families with a low number of cancer patients should be referred for BRCA1 genetic testing mainly when ovarian cancer is present.  相似文献   

7.
Mutations in the BRCA1/BRCA2 genes account for varying proportions of breast cancer families studied, and demonstrate considerable variation in mutational spectra coincident with ethnic and geographical diversity. We have screened for mutations in 17 families from Wales with two or more cases of breast cancer under age 50 and/or ovarian cancer. Eight out of 17 (47%) families had demonstrable mutations. Six out of 17 (35%) carried BRCA1 mutations and 2 out of 17 (12%) carried BRCA2 mutations. Two recurrent mutations in BRCA1 were identified, which appear to represent founder mutations in this population. These data support the existence of additional breast and ovarian cancer susceptibility genes.  相似文献   

8.
BRCA1 accounts for nearly all families with multiple cases of both early onset breast and ovarian cancer and about 45% of families with breast cancer only. Although to date more than 200 distinct mutations have been described, several have been found to be recurrent in the gene. We have analyzed 87 Spanish breast/ovarian cancer families for the six most recurrent mutations in the BRCA1 gene. The analysis of the five exons where these mutations are located was made using the SSCP and sequenciation techniques. Four mutations were found in our families and only two carried one of the six mutations analyzed. In both cases the mutation identified was 185delAG. Our results suggest that these six mutations are not specially recurrent in the Spanish population and that differences in the geographical origin of the families can influence the type and proportion of mutations identified.  相似文献   

9.
Several BRCA2 mutations are found to occur in geographically diverse breast and ovarian cancer families. To investigate both mutation origin and mutation-specific phenotypes due to BRCA2, we constructed a haplotype of 10 polymorphic short tandem-repeat (STR) markers flanking the BRCA2 locus, in a set of 111 breast or breast/ovarian cancer families selected for having one of nine recurrent BRCA2 mutations. Six of the individual mutations are estimated to have arisen 400-2,000 years ago. In particular, the 6174delT mutation, found in approximately 1% of individuals of Ashkenazi Jewish ancestry, was estimated to have arisen 29 generations ago (1-LOD support interval 22-38). This is substantially more recent than the estimated age of the BRCA1 185delAG mutation (46 generations), derived from our analogous study of BRCA1 mutations. In general, there was no evidence of multiple origins of identical BRCA2 mutations. Our study data were consistent with the previous report of a higher incidence of ovarian cancer in families with mutations in a 3.3-kb region of exon 11 (the ovarian cancer cluster region [OCCR]) (P=.10); but that higher incidence was not statistically significant. There was significant evidence that age at diagnosis of breast cancer varied by mutation (P<.001), although only 8% of the variance in age at diagnosis could be explained by the specific mutation, and there was no evidence of family-specific effects. When the age at diagnosis of the breast cancer cases was examined by OCCR, cases associated with mutations in the OCCR had a significantly older mean age at diagnosis than was seen in those outside this region (48 years vs. 42 years; P=.0005).  相似文献   

10.
The present study was undertaken to analyse the loss of heterozygosity (LOH) of the three genes, BRCA1, BRCA2 and ATM, and their correlation to clinicopathological parameters in sporadic breast cancer. We studied 59 sets of invasive ductal carcinoma, compared to matched normal control DNA. Microsatellite markers intragenic to BRCA1 (D17S1323, D17S1322, D17S855), BRCA2 (D13S1699, D13S1701, D13S1695) and ATM (D11S2179) were simultaneously used. In addition, one marker telomeric to BRCA2 (D13S1694) and four markers flanking ATM were analysed (D11S1816, D11S1819, D11S1294, D11S1818). Thirty-one per cent of the informative cases showed loss of heterozygosity for the BRCA1 gene, 22.8% for BRCA2 gene and 40% for ATM. LOH of BRCA1 correlated with high grade tumors (p=0.0005) and negative hormone receptors (p=0.01). LOH of ATM correlated with higher grade (p=0.03) and a younger age at diagnosis (p=0.03) in our set of tumors. No correlations were detected between BRCA2 LOH and any of the analysed clinicopathological parameters. However, a correlation was detected between allelic loss of the D13S1694 marker, telomeric to BRCA2, and larger tumor sizes and negative estrogen receptors, favoring the hypothesis of the presence of another putative tumor suppressor gene, telomeric to BRCA2, in the 13q12-q14 region. Only 11 tumors had LOH at more than one of the three genes, most of them (6/11) associated LOH of BRCA1 and ATM. One tumor only combined loss of the three genes BRCA1, BRCA2 and ATM.  相似文献   

11.
Predisposing germline mutations in the BRCA1 gene were identified recently in families with 17 q-linked breast and ovarian cancers. Using single-strand conformation polymorphism (SSCP) analysis, we examined primary breast cancers for mutations in coding exons of BRCA1 in a panel of 103 patients, of whom all either represented early-onset cases (< 35 of age), were members of multiply-affected families, and/or had developed bilateral breast cancers. Mutations were detected in tumors from four patients, all of whom had developed breast cancers bilaterally: a frame-shift due to a 2-bp deletion at codon 797; a nonsense mutation at codon 1214; and two missense mutations, one at codon 271 leading to Val-->Met substitution, and the other at codon 1150 leading to Pro-->Ser substitution. In each case the same mutation was present in constitutional DNA. The mean age of onset was 49 years among the Japanese carriers of BRCA1 mutations identified in this study, in contrast to the mean age of 35 observed among carriers of BRCA1 mutations in a similar U.S. study (Futreal et al., 1994). The evidence reported here supports a rather limited role of BRCA1 in breast carcinogenesis.  相似文献   

12.
BACKGROUND: Women with breast carcinoma diagnosed before age 40 years have a greater prevalence of germline BRCA1 and BRCA2 mutations than women with breast carcinoma diagnosed at older ages. Several recognizable histologic characteristics have been identified in breast carcinoma from studies of BRCA1/2 mutation carriers who belong to multiple-case families. The authors attempted to determine whether breast carcinoma occurring before age 40 years in BRCA1 or BRCA2 mutation carriers who were not selected for family history could be distinguished histologically from one another and from breast carcinoma in women of a similar age without a germline BRCA1 or BRCA2 mutation. METHODS: The study undertook a histologic assessment of breast carcinomas diagnosed before age 40 years identified from a population-based study. RESULTS: Breast carcinoma in BRCA1 mutation carriers was associated with a distinct histologic appearance; these tumors were high grade, and had exceptionally high mean mitotic counts, a syncytial growth pattern, pushing margins, and confluent necrosis. Atypical medullary carcinoma was overrepresented in BRCA1 mutation carriers. All low grade tumors and tumors with low mitotic rates belonged to the group without BRCA1 or BRCA2 mutations. Pleomorphic lobular carcinomas and extensive intraduct carcinomas were more common in BRCA2 mutation carriers. CONCLUSIONS: Breast carcinoma occurring in women with a germline BRCA1 or BRCA2 mutation have recognizable histologic phenotypes, which may be useful in identifying individuals more likely to carry germline mutations. Histologic examination of breast carcinoma should become an important part of the evaluation of women seeking genetic testing for germline mutations in these breast carcinoma susceptibility genes.  相似文献   

13.
To estimate the proportion of breast cancer families due to BRCA1 or BRCA2, we performed mutation screening of the entire coding regions of both genes supplemented with linkage analysis of 31 families, 8 containing male breast cancers and 23 site-specific female breast cancer. A combination of protein-truncation test and SSCP or heteroduplex analyses was used for mutation screening complemented, where possible, by the analysis of expression level of BRCA1 and BRCA2 alleles. Six of the eight families with male breast cancer revealed frameshift mutations, two in BRCA1 and four in BRCA2. Although most families with female site-specific breast cancers were thought to be due to mutations in either BRCA1 or BRCA2, we identified only eight mutations in our series of 23 site-specific female breast cancer families (34%), four in BRCA1 and four in BRCA2. According to the posterior probabilities calculated for mutation-negative families, based on linkage data and mutation screening results, we would expect 8-10 site-specific female breast cancer families of our series to be due to neither BRCA1 nor BRCA2. Thus, our results suggest the existence of at least one more major breast cancer-susceptibility gene.  相似文献   

14.
The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.  相似文献   

15.
BACKGROUND: To define the incidence of BRCA1 mutations among patients seen in clinics that evaluate the risk of breast cancer, we analyzed DNA samples from women seen in this setting and constructed probability tables to provide estimates of the likelihood of finding a BRCA1 mutation in individual families. METHODS: Clinical information, family histories, and blood for DNA analysis were obtained from 263 women with breast cancer. Conformation-sensitive gel electrophoresis and DNA sequencing were used to identify BRCA1 mutations. RESULTS: BRCA1 mutations were identified in 16 percent of women with a family history of breast cancer. Only 7 percent of women from families with a history of breast cancer but not ovarian cancer had BRCA1 mutations. The rates were higher among women from families with a history of both breast and ovarian cancer. Among family members, an average age of less than 55 years at the diagnosis of breast cancer, the presence of ovarian cancer, the presence of breast and ovarian cancer in the same woman, and Ashkenazi Jewish ancestry were all associated with an increased risk of detecting a BRCA1 mutation. No association was found between the presence of bilateral breast cancer or the number of breast cancers in a family and the detection of a BRCA1 mutation, or between the position of the mutation in the BRCA1 gene and the presence of ovarian cancer in a family. CONCLUSIONS: Among women with breast cancer and a family history of the disease, the percentage with BRCA1 coding-region mutations is less than the 45 percent predicted by genetic-linkage analysis. These results suggest that even in a referral clinic specializing in screening women from high-risk families, the majority of tests for BRCA1 mutations will be negative and therefore uninformative.  相似文献   

16.
The cell-cell adhesion molecule E-cadherin is well known to act as a strong invasion suppressor in experimental tumor cell systems. Frequent inactivating mutations have been identified for the E-cadherin gene (CDH1) in diffuse gastric cancers and lobular breast cancers. To date, 69 somatic mutations have been reported comprising, in addition to few missense mutations, mainly splice site mutations and truncation mutations caused by insertions, deletions, and nonsense mutations. Interestingly, there is a major difference in mutation type between diffuse gastric and infiltrative lobular breast cancers. In diffuse gastric tumors, the predominant defects are exon skippings, which cause in-frame deletions. By contrast, most mutations found in infiltrating lobular breast cancers are out-of-frame mutations, which are predicted to yield secreted truncated E-cadherin fragments. In most cases, these mutations do occur in combination with loss of heterozygosity (LOH) of the wild-type allele. Inactivating germline mutations of E-cadherin were recently reported for families with early-onset diffuse gastric cancer. Also, at the early stages of sporadic lobular breast and diffuse gastric cancers, E-cadherin mutations were detected, suggesting loss of growth control by such mutations and defining E-cadherin as a true tumor suppressor for these particular tumor types.  相似文献   

17.
We have identified four mutations in each of the breast cancer-susceptibility genes, BRCA1 and BRCA2, in French Canadian breast cancer and breast/ovarian cancer families from Quebec. To identify founder effects, we examined independently ascertained French Canadian cancer families for the distribution of these eight mutations. Mutations were found in 41 of 97 families. Six of eight mutations were observed at least twice. The BRCA1 C4446T mutation was the most common mutation found, followed by the BRCA2 8765delAG mutation. Together, these mutations were found in 28 of 41 families identified to have a mutation. The odds of detection of any of the four BRCA1 mutations was 18.7x greater if one or more cases of ovarian cancer were also present in the family. The odds of detection of any of the four BRCA2 mutations was 5.3x greater if there were at least five cases of breast cancer in the family. Interestingly, the presence of a breast cancer case <36 years of age was strongly predictive of the presence of any of the eight mutations screened. Carriers of the same mutation, from different families, shared similar haplotypes, indicating that the mutant alleles were likely to be identical by descent for a mutation in the founder population. The identification of common BRCA1 and BRCA2 mutations will facilitate carrier detection in French Canadian breast cancer and breast/ovarian cancer families.  相似文献   

18.
If genetic testing for breast and ovarian cancer predisposition is to become available within a public health care system there needs to be a rational and cost-effective approach to mutation analysis. We have screened for BRCA1 mutations in 230 women with breast cancer, all from the Wessex region of southern England, in order to establish the parameters on which to base a cost-effective regional mutation analysis strategy. Truncating mutations were detected in 10/155 (6.5%) consecutive cases selected only for diagnosis under the age of 40 (nine of these ten women had a strong family history of breast or ovarian cancer), 3/61 (4.9%) bilateral-breast cancer cases (all three mutations occurring among women for whom the first cancer was diagnosed under 40 years) and 8/30 (26.6%) breast cancer cases presenting to the genetics clinic (for whom a strong family history of breast and/or ovarian cancer was present). Ten different mutations were detected in 17 families, but three of these accounted for 10/17 (59%) of the families. The cost of screening the population for mutations in the entire BRCA1 gene is unacceptably high. However, the cost of screening a carefully selected patient cohort is low, the risk of misinterpretation much less and the potential clinical benefits clearer.  相似文献   

19.
PURPOSE: Previous studies of mutations in BRCA1 or BRCA2 have used detection methods that may underestimate the actual frequency of mutations and have analyzed women using heterogeneous criteria for risk of hereditary cancer. PATIENTS AND METHODS: A total of 238 women with breast cancer before age 50 or ovarian cancer at any age and at least one first- or second-degree relative with either diagnosis underwent sequence analysis of BRCA1 followed by analysis of BRCA2 (except for 27 women who declined analysis of BRCA2 after a deleterious mutation was discovered in BRCA1). Results were correlated with personal and family history of malignancy. RESULTS: Deleterious mutations were identified in 94 (39%) women, including 59 of 117 (50%) from families with ovarian cancer and 35 of 121 (29%) from families without ovarian cancer. Mutations were identified in 14 of 70 (20%) women with just one other relative who developed breast cancer before age 50. In women with breast cancer, mutations in BRCA1 and BRCA2 were associated with a 10-fold increased risk of subsequent ovarian carcinoma (P = .005). CONCLUSION: Because mutations in BRCA1 and BRCA2 in women with breast cancer are associated with an increased risk of ovarian cancer, analysis of these genes should be considered for women diagnosed with breast cancer who have a high probability of carrying a mutation according to the statistical model developed with these data.  相似文献   

20.
We have identified a high frequency of loss of heterozygosity (LOH) on the human chromosome region 8p12-p22 in a panel of microdissected familial (86% LOH) and sporadic (74% LOH) breast tumours. The two most frequently deleted regions were defined around marker D8S133 and in a broader centromeric region bounded by markers D8S137 and D8S339. We cannot unequivocally characterize the 8p12-p22 loss as an early or a late event in breast carcinogenesis. In parallel, we have performed linkage analysis in four German breast cancer families. A location score greater than 13.67 corresponding to a LOD score of 2.97 at the marker D8S137 has been obtained. Our results considerably strengthen the evidence for a breast cancer susceptibility gene(s) located on the short arm of the chromosome region at 8p12-p22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号