首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al alloys with additions of Sc and/or Zr exhibit a reasonably stable grain structure due to a uniform distribution of coherent Al3(Sc,Zr) precipitates that forms at temperatures >300 °C. These precipitates are stable up to the solution treatment temperature and are able to pin subgrain and grain boundaries, inhibiting grain coarsening. The crystallographic structure of these precipitates presents a L12 superstructure coherent with the face-centred cubic Al matrix. Changes in the orientation relation between precipitates and the matrix are described in deformed, recovered and partially recrystallized samples of extrusions of AW7010 (AlZn6Mg2Cu2). The coherency of the intracrystalline Al3(Sc,Zr) precipitates present in the extrusions is lost by severe deformation performed by an equal channel angular pressing process, which produced a fine-grained microstructure. The deformed sample recovers, forming a subgrain structure with restored coherency of the Al3(Sc,Zr) precipitates. Rapid heating to 470 °C causes partial secondary recrystallization, which transforms the precipitates within the recrystallized grains into incoherent groups of particles that maintain their original orientation with each other.  相似文献   

2.
《Intermetallics》2002,10(5):473-484
The recovery, recrystallization and grain growth of particle-free and particle-containing Fe3Al intermetallics with a total warm reduction of 70% were investigated in the temperature range from 750 to 1115 °C. The physical phenomena during annealing were characterized and analyzed based on the observations of microstructure, measurement of long-range order degree and determination of micro-hardness. The reordering occurs due to the removal of antiphase boundary trails resulting from the dislocation rearrangement during annealing. The micro-hardness depends on both the dislocation density and the change of long-range order degree. The addition of alloying elements affects the dependence of hardness on reordering. It also has a great effect on the recovery and recrystallization. The recrystallized nuclei are formed by preferential subgrain growth and grain boundary migration. Due to strong anisotropy of Fe3Al-based alloys, the grain boundary migration resulting from inhomogeneous deformation was frequently observed and the distribution of grain size after annealing was also inhomogeneous. The recrystallization kinetics follows the Kolmogorov-Johnson-Mehl-Avrami (KJMA) relationship. Long-range order and second phase are beneficial in decreasing the grain-boundary mobility. The grain growth kinetics of Fe3Al intermetallics investigated follows the conventional power law equation with a high grain growth exponent of more than 4. Abnormal grain growth in the Fe–28% Al–5% Cr–0.1% Zr–0.5% Mo–0.5% Nb–0.05B% (at.%) alloy was found when it was annealed at 1115 °C for 72 h.  相似文献   

3.
The film growth of Cr thin film by DC-magnetron sputter deposition was investigated by experimentally measuring the evolution of grain size distribution and by computing the film growth using Monte Carlo simulation. The as-deposited Cr thin film by sputter deposition typically grows in a columnar grain structure at the substrate temperature 260°C, which is far lower than 0.3 Tm. The stagnation of columnar grain structure does not occur in the case of no-bias condition up to the investigated film thickness of about 800 nm. However, the application of a negative bias of 200 V results in a stagnation of columnar grain structure at film thickness of about 50 nm and at the deposition temperature of 260°C. This is believed to arise from the fact that the mobility of ad-atoms is greatly enhanced and the Ar+ ions pin the grain boundary as a result of bias application. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformation of Nano-Materials,” organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University Seoul, Korea on October 25–26, 2002.  相似文献   

4.
The final microstructure of cold rolled intermetallic disordered alloy Fe17Al4Cr0.3Zr was rebuilt during the annealing at moderate temperatures in the range of 800 to 900?°C. The time necessary to obtain recrystallized structure was determined at several annealing temperatures to optimize the processing technology of the plates. The phases present in the material during this process were identified. The grain growth (grain boundary movement) during static recrystallization (SRX) is connected with the interaction with an array of the Laves phase ??1(Fe,Al)2Zr and ZrC particles. The Avrami-based phenomenological model describing kinetics of SRX was developed. The activation energy for recrystallization was estimated.  相似文献   

5.
《Acta Materialia》2001,49(11):2083-2094
The isothermal recrystallization of 90% cold-rolled commercial purity aluminum alloy AA1050 was studied by means of quantitative microscopy at four temperatures from 245°C to 280°C. The microstructural properties, Vv, the volume fraction recrystallized, Sv, the interfacial area density separating recrystallized grains from deformed grains and 〈λ〉, the mean recrystallized grain free length, were measured stereologically as a function of time. The kinetics, microstructural path, grain boundary migration rates and temperature dependence of recrystallization were quantified experimentally. Based on analysis of all data and microstructural path modelling, recrystallization was determined to be growth (boundary migration rate) controlled; all nucleation occurred in time periods short compared to the earliest annealing times. The activation energy for grain boundary migration was calculated to be 172–183 kJ/mole suggesting that a solute-limited grain boundary migration rate mechanism was operative in the alloy. The recrystallization microstructural path was found to be isokinetic, i.e. identical at all the annealing temperatures studied. Two stages of recrystallization kinetics were observed; an early transient-like stage characterized by decreasing growth rates and a later stage in which the kinetics approached Avrami behavior and the growth rates were approximately constant. The transient-like behavior is attributed to the steep, deformation-induced stored energy gradients surrrounding precipitate particles where the recrystallized grains are nucleated.  相似文献   

6.
The stability of lamellar structure is crucial for the creep resistance of TiAl alloys, but degradation of the lamellar structure is unavoidable at high temperatures. The degradation of the lamellar structure in PST crystals of Ti-48mol.%Al was studied during high temperature exposure (annealing and creep testing) to examine how to make a stable lamellar structure with high creep deformation resistance. Since the six orientation variants of γ lamellae are nucleated independently of the adjoining lamellae, pseudo twin and 120° rotational fault boundaries are most frequently observed at the initial stage of lamellar formation. The preferential removal of high energy (pseudo twin and 120° rotational fault) boundaries during the evolution of lamellar structure results in the highly probable appearance of a true twin boundary at a later stage of lamellar evolution. The coarsening of lamellar spacing and the spheroidization of the lamellae are the major degradation events occurring during creep deformation, and the migration of the lamellar boundaries brings both of them about. The lamellar structures of TiAl alloy contain four types of lamellar boundaries. The stability of the four types of boundaries decreases in the following order: γ/α2 > true twin > pseudo twin > or=120° rotational fault boundaries. The γ/α2 boundary has the highest stability (lowest mobility), and the high density of γ/α2 boundaries is proposed to make a stable lamellar structure with good creep resistance. A material having the high density of γ/α2 boundaries was produced through the heat treatment of a PST crystal in the α+γ two-phase regime. The excellent creep properties of the material were proven through creep tests of hard oriented PST crystals made of the material. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials,” organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   

7.
《Acta Materialia》2002,50(18):4527-4534
Cube ({100}〈001〉) texture is developed through secondary recrystallization when rolling direction is changed towards the transverse direction at the final stage of cold-rolling of grain-oriented electrical steel. The development of the cube texture is discussed stressing the role of high-energy boundary having the misorientation angle between 20 and 45°, which was used for the explanation of the development of Goss ({110}〈001〉) texture in our previous works. The high-energy boundary has more structural defects, which are linked to high mobility and high grain boundary diffusion rate. Quicker coarsening of precipitates enables high-energy boundaries to move earlier than other boundaries during final annealing. A texture component that has the highest frequency of high-energy boundary can be a main component through selective growth during secondary recrystallization. Textures different from Goss can also be predicted by analyzing the frequency of high-energy boundaries in the primary recrystallized texture. The growth model based on Coincident Site Lattice (CSL) boundaries and another model based on Orientation Pinning (OP) are tested, but these models cannot provide a consistent explanation in the present experiment.  相似文献   

8.
《Acta Materialia》2002,50(13):3453-3463
The grain growth and densification have been investigated in very high-purity α-alumina doped with varying amounts of yttrium (0 to 3000 wt ppm of yttria) and sintered in air at 1450, 1550 and 1650 °C. Yttrium doping inhibited densification and coarsening at 1450 °C, but had very little effect at 1550 °C and no effect at 1650 °C. The change in densification behaviour is suggested to be related to the transition with increasing temperature from grain boundary diffusion to lattice diffusion controlled densification. The coarsening rate increases faster with temperature than the densification rate. This was correlated with a higher measured activation energy for grain growth than for the diffusion processes, which control the densification.  相似文献   

9.
In this study, the microstructural evolution of Inconel alloy 740 during solution treatment and aging was characterized using optical and scanning electron microscopy. During double solution heat treatment, carbon is liberated from the dissolution of MC carbides during the first solution treatment at 1150 °C, and fine MC carbides are precipitated on gamma grain boundaries during the second solution treatment at 1120 °C. Due to the concurrent decrease in carbon solubility and the increase in the contribution of grain boundary diffusion at lower temperatures, the MC carbides on the gamma grain boundaries provide a localized carbon reservoir that aids in M23C6 carbide precipitation on gamma grain boundaries during exposure at 760 °C. The γ′ phase, which is the key strengthening phase in alloy 740, is incorporated into the alloy microstructure during aging at 850 °C. The main source of microstructural instability observed during exposure at 760 °C was the coarsening of the γ′ phase.  相似文献   

10.
《Acta Materialia》2003,51(10):3005-3018
Static, isothermal recrystallization at a temperature of 400 °C was studied by means of quantitative microscopy in a well-characterized, commercial purity aluminum-alloy AA1050 that had undergone plane strain deformation at 400 °C at a strain rate of 2.5 s−1 to an equivalent strain of 2. The microstructural properties, Vv, the volume fraction recrystallized, Sv, the interfacial area density separating recrystallizing grains from deformed volumes and <λ>, the mean recrystallized grain free length, were all measured stereologically as a function of time and the reaction kinetics, microstructural path, grain boundary migration rates and nucleation characteristics of the recrystallization were quantified experimentally. The results are compared to a recently published study of recrystallization in the identical pre-deformation starting material but after room temperature deformation by rolling to a comparable strain. Recrystallization kinetics differences between the two materials include: the hot deformed material had a higher, by at least 120 °C, recrystallization temperature; had many fewer recrystallization nuclei leading to a factor of about three larger as-recrystallized grain size; lacked a Cahn-Hagel growth rate transient like the cold deformed exhibited; and required a slightly different impingement model for the microstructural path analysis. In both cases particle stimulated nucleation (PSN) was thought to be operative but it seemed to be much more potent after cold deformation.  相似文献   

11.
1 Introduction Intermetallic compounds have long been the subjects of considerable interest for high temperature applications. In particular, Ni3Al is one of the more promising intermetallic compounds due to its anomalous temperature dependence of the yie…  相似文献   

12.
The torsion tests of 304 stainless steel were performed in the temperature range of 900~1100°C and strain rate range of 5.0 × 10-2~5.0 × 10°/sec to study the high temperature softening behavior. The flow curves and microstructures showed the behavior of dynamic recrystallization (DRX). The dependence of temperature(T) and the stain rate(ɛ) on the flow stress was expressed by the hyperbolic sine law, ɛ=2.75 × 10 (sinh 0.076σ)5.26 exp(-379000 J/mol/RT). The dynamically recrystallized grain size(dDRX) was related to the value of the Zener-Hollomon parameter Z. Under the Z value of 1017, it was found that the grain size ranged from 10 to 20 μm. The relationship between the dynamically recrystallized grain size and Z parameter was found as follows: dDRX=l 39.48-7.33 log Z and the calculated grain sizes were well matched with the experimental values. To determine the optimum condition of plastic deformation, the deformation map was made from the efficiency of power dissipation. The maximum efficiency was 0.41 at the condition of 1100°C, 0.5/sec, 100%.  相似文献   

13.
Effects of strain rate on the microstructure evolution and thermal stability of 1050 commercial pure aluminum processed by means of split Hopkinson pressure bar (SHPB) and Instron?3369 mechanical testing machine were investigated. Samples in the deformed state and after various annealing treatments at 423?523 K (150?250 °C) for 1 h were characterized by TEM and hardness test. The result reveals that the samples in the deformed state were mainly composed of elongated subgrains/cells with high density of dislocations. Microstructures of the quasi-static compressed aluminum were quite stable throughout the temperature range studied, and no significant grain growth was observed. However, for the dynamic impacted one, recrystallized grains with an average grain size of 4.7 μm were evolved after annealing at 523 K (250 °C) for 1 h. It is suggested that the annealing behavior of this dynamic deformed aluminum is a continuous process of grain coarsening, rather than the traditional discontinuous recrystallization for the quasi-static compressed aluminum.  相似文献   

14.
The age-hardening and overaging mechanisms related to the metastable phase formation by the decomposition of Ag and Cu in a dental casting gold alloy composed of 56Au–25Ag–11.8Cu–5Pd–1.7Zn–0.4Pt–0.1Ir (wt.%) were elucidated by characterizing the age-hardening behaviour, phase transformations, changes in microstructure and changes in element distribution. The fast and apparent increase in hardness at the initial stage of the aging process at 400°C was caused by the nucleation and growth of the metastable Ag–Au-rich phase and the Cu–Au-rich phase by the miscibility limit of Ag and Cu. The transformation of the metastable Ag–Au-rich phase into the stable Ag–Au-rich phase progressed concurrently with the ordering of the Cu–Au-rich phase into the AuCu I phase through the metastable state, which resulted in the subsequent increase in hardness. The further increase in hardness was restrained before complete decomposition of the parent α0 phase due to the initiation of the lamellar-forming grain boundary reaction. The progress of the lamellar-forming grain boundary reaction was not directly connected with the phase transformation of the metastable phases into the final product phases. The heterogeneous expansion of the lamellar structure from the grain boundary caused greater softening than the subsequent further coarsening of the lamellar structure. The lamellar structure was composed of the Ag–Au-rich layer which was Cu-, Pd- and Zn-depleted and the AuCu I layer containing Pd and Zn.  相似文献   

15.
Recovery and recrystallization were studied in commercial purity aluminum cold rolled to an ultrahigh strain (εvM = 6.4) and isothermally annealed at 300 °C. The deformed material consists of three layers with similar fractions of high-angle boundaries (HABs) and similar lamellar boundary spacings, but with different textures and different spatial arrangements of the rolling texture components. Annealing leads initially to a coarsening of the lamellar microstructure, accompanied by a reduction in the HAB fraction. Ex-situ experiments using very short annealing times indicate that such microstructural changes are consistent with a process of coarsening via triple junction motion. The recovery proceeds similarly in the center and subsurface layers, but because of the different initial spatial arrangement of the texture components in these layers, the loss of HABs is significantly greater in the subsurface compared with the center layer. Further annealing leads to discontinuous recrystallization, which occurs differently in the center and subsurface layers. In the center layer, recrystallization proceeds more rapidly and with a larger frequency of nuclei, resulting in a smaller recrystallized grain size. In contrast, pronounced recrystallization in the subsurface layers is delayed, and the recrystallized grain size is larger than in the center. It is concluded that the changes taking place during recovery are very significant in determining the subsequent recrystallization behavior in terms of the final grain size and texture.  相似文献   

16.
N. Bozzolo  N. Souaï  R.E. Logé 《Acta Materialia》2012,60(13-14):5056-5066
Microstructure evolution has been studied in the nickel-based superalloy PER®72 subjected to hot torsion, to annealing below the primary γ’ solvus temperature and to annealing at a supersolvus temperature, with a special emphasis on grain size and twin content. Dynamic abnormal grain growth occurs before the onset of dynamic recrystallization. The resulting bimodal grain size distribution affects the grain-coarsening kinetics at the supersolvus temperature, so that the final microstructures depend on the former straining stages. As a consequence, the twin content does not follow a univocal relationship with the average grain size. The grain boundary velocity history before reaching the final grain size is a contributing factor, and this is notably related to the initial grain size distribution width. Dynamically recrystallized microstructures are by nature more homogeneous and thus give rise to lower rates in supersolvus grain coarsening, and accordingly lead to relatively lower twin densities.  相似文献   

17.
本文使用金相、EBSD等手段研究了等通道挤压对Mg-1Gd、Mg-2Zn两种二元合金组织和力学性能的影响。结果表明,在相同挤压条件下,Mg-2Zn合金发生完全再结晶,晶粒长大粗化,且强度塑性不随着挤压道次变化;Mg-1Gd合金则只发生了部分动态再结晶,组织为细小的动态再结晶晶粒和变形晶粒,伴随挤压道次的增加,再结晶程度提升,合金的抗拉强度与塑性增加了一倍。这与溶质原子Gd比Zn更能抑制再结晶和晶粒长大有关。Mg-1Gd合金的再结晶晶粒的取向分散,而未再结晶的晶粒c轴取向由ED向TD偏转45°,这与宏观织构的检测相互印证,晶粒内部产生大量的小角度晶界,小角度晶界两侧发生围绕c轴的转动,并逐渐演化为大角度晶界。  相似文献   

18.
The coarsening behavior of γ′ particles in a nickel-base superalloy FGH95 was investigated by means of experimental observations and growth kinetics calculations. The results show that when aging at 1000, 1080 and 1140°C for different times, the relation of average particle size to time obeys the cube law (ā/2)3 = kt, where k is 15.49 × 103, 77.5 × 103 and 230.04 × 103 nm3/min, respectively. The particle size distributions are better fit to the LSW theoretical distributions when aging at 1000°C within 1440 min. The activation energy for γ′ particles coarsening is determined to be 288.20±1.79 kJ/mol, which correlates well to the diffusion activation energies of Al, Ti, and Nb in the nickel matrix. This indicates that the coarsening of γ′ particles is controlled by the diffusion of Al, Ti, and Nb in the nickel matrix. The coarsening kinetics of γ′ particles in FGH95 is predicted as t 3 = 1.04×1016 t exp[−(288200±1790)/RT]  相似文献   

19.
The goal of this work was to understand the effects of aging at 800 °C on the microstructures and mechanical properties of two recently-developed AFA stainless steels based on Fe-14Cr-32Ni-3Nb-3Al-2Ti (wt.%), one of which contained small additions of boron and carbon. To that end both the size distributions and growth kinetics of the B2, Laves phase, L12 precipitates present were quantified. While the lattice parameter, morphology, size and coarsening behavior of the L12 precipitates was the same in both AFA alloys, the B and C enhanced the grain boundary coverage by both Laves phase and B2-NiAl precipitates, but suppressed their coarsening. These interstitial additions also suppressed the formation of twins and discontinuous precipitation, which were observed in the B and C-free material. It is shown that the yield strength at 700 °C is largely controlled by the size of the L12 precipitates, with the largest strengthening effect obtained after aging for 2.4 h for both AFA alloys. Longer aging time led to a loss of strength mainly due to the coarsening of the L12 precipitates.  相似文献   

20.
The interfacial energy of solid bismuth (Bi) in equilibrium with Bi−In eutectic liquid was determined for the equilibrating temperature of 109.5 °C. A radial temperature gradient on the sample was established by heating it from the center with a single heating wire and cooling the outside of the sample at −10 °C with a heating/refrigerating circulating bath containing an aqueous ethylene glycol solution. The equilibrated grain boundary groove shapes of solid Bi in equilibrium with Bi In eutectic liquid (Bi- 47.3 at. %In) were observed from a sample quenched at 109.5 °C. The Gibbs-Thomson coefficient and the solid-liquid interfacial energy of the solid Bi in equilibrium with Bi In eutectic liquid were determined to be (8.4±0.4) × 10−8 K m and (54.0±5.4)×10−3 J m−2 from the observed grain boundary groove shapes. The grain boundary energy of the solid Bi phase was calculated to be (105.5±11.6)×10−3 J m−2 by considering a force balance at the grain boundary grooves. The thermal conductivities of Bi-47.3 at. %In eutectic liquid phase and the solid Bi-47.3 at. %In phase and their ratio at 109.5 °C were measured with a radial heat flow apparatus and a Bridgman type growth apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号