共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
本文介绍两种误差补偿的方法,便于利用微机进行误差补偿,提高计量器具的准确度。 一、误差补偿的数学模型 进行任何测量都会产生误差。要想对误差进行补偿.就要找出误差的影响因素,并测出测量过程中各点的误差使。在补偿时,只要能将已测出的各点的实际值加.上或减去相应点的误差值,就可以得到较接近真值的准确值,便可达到补偿的目的。用数学模型表示则为:其中 和 分别为要补偿点的误差矢量和误差修正量。n为补偿点数。 如果误差的影响因素较多.就要求光测出影响各补偿点的累积误差矢量,控制累积误差值.同样可达到误差补偿的目的。用数学模型… 相似文献
6.
机床误差的测量与补偿研究 总被引:1,自引:0,他引:1
随着人们对加工精度要求的不断提高,微位移技术也随之产生。微进给机构是指行程小、灵敏度和精度高的机构,是精密机械和精密仪器的重要组成部分之一。本文对机床微位移机构误差的测量与补偿进行了探讨。 相似文献
7.
针对地磁/GPS组合姿态检测系统测量精度受弹体摆动影响较大的问题,在分析地磁/GPS组合姿态检测系统的弹体摆动误差的基础上,提出了基于地磁陀螺组合的姿态检测方法,建立了地磁陀螺组合姿态检测模型,利用两轴MEMS陀螺测量的角速率实时积分求解弹体偏航角,结合地磁模块输出的三维地磁分量,组合求解弹体姿态信息.结果表明,与地磁/GPS组合方案相比,增加陀螺模块可消除滚转角和俯仰角随弹体摆动而产生的误差波动,测姿能够适应各种运动环境变化,并保持良好的稳定性. 相似文献
8.
9.
10.
研究了一种单对磁极磁编码器的误差补偿方法。针对单对磁极磁编码器中存在的零位误差、灵敏度误差、正交误差和铁磁干扰等每一种误差进行分析,得出各自的误差表达式。为了便于误差补偿,总结出描述这种误差共性的表达式,此式将误差的形成过程假设为圆到椭圆的变化过程,其逆过程就是误差补偿的过程。实验结果表明,利用此种方法的磁编码器精度达到了0.02°,误差补偿效果明显。根据此方法研究的磁编码器具有成本低、精度高、使用方便的特点。 相似文献
11.
为得到弹丸在膛内运动的摆动情况,该文提出一种通过微波干涉仪获取弹丸在膛内的微运动姿态相关信息的测试方法。首先建立线膛炮内弹丸微运动产生的多普勒模型,在模型的基础上利用短时傅里叶变换获取弹丸在膛内纵向运动的变换规律,再利用Hilbert-Huang变换获得详细的微多普勒信息,最后应用小波变换得到弹丸在膛内摆动的幅度和频率。研究表明:通过结合3种时频变换方法,能定量得到弹丸在膛内的摆动特征,且摆动频率误差在1 kHz范围以内;与不同组的实验数据对比,可以判断火炮身管内的不平衡程度。 相似文献
12.
Cheng Chen Yingying Wan Guangkai Fu Yapin Wang Chengmeng Li 《Journal of Modern Optics》2018,65(16):1902-1909
The three-dimensional reconstruction in phase-measuring profilometry (PMP) usually involves the phase error caused by the gamma effect of the projector. In this study, the relationship between the unwrapped phase and the phase error of every pixel is analysed, and an effective full-field phase error compensation method based on this relationship is proposed for the reduction of every pixel error. In our optimized PMP system, the full-field phase error can be detected by directly fitting the unwrapped phase of the reference plane. In addition, the relationship between the unwrapped phase and the phase error can be established by creating a phase-error lookup table for the phase error compensation of every pixel. The experimental results demonstrate the effectiveness of the proposed method in practical PMP, and the measurement errors can be reduced by a factor of least 10. 相似文献
13.
14.
15.
16.
17.
ABSTRACTNonlinearities in the application of fringe projection metrology make it very difficult to acquire perfect 3D data. This paper describes a six-step phase-shifting technique for a structured light measurement system with an off-the-shelf projector. First, the phase error is analysed and a gamma model is established by deriving the relative expression between the wrapped phase and input images. This is then expressed in matrix form to derive a unique solution, which is used for the gamma solver. The complex gamma calibration and projector error compensation can be removed once the gamma value of the off-the-shelf projector has been determined. The ideal model reconstruction results are obtained through simulations and experiments, and the standard deviation of the phase error is found to be only 0.0039 radians. Hence, the proposed method eliminates the nonlinear errors associated with fringe projection technology using existing projectors and improves the overall image reconstruction quality. 相似文献
18.
针对弹体磁场严重影响旋转弹捷联地磁传感器的测量精度这一问题,提出一种基于卡尔曼滤波算法(Kalman filter, KF)的弹体磁场校正方法。利用固定磁场和感应磁场模型,将弹体磁场误差系数转换到椭球参数方程上,从而得到卡尔曼滤波的观测方程。为提高算法的鲁棒性,采用事先标定法建立初始条件。根据卡尔曼滤波原理,给出辨识参数在线更新的实现步骤,推导弹体磁场的校正过程。仿真试验中,通过事先标定法选取初值提高待估参数2倍的收敛速度。转台试验中,弹体磁场校正后的磁测误差接近磁传感器的测量噪声,滚转角解算精度优于1°。试验验证该算法可在线更新弹体磁场误差系数,实现弹体磁场的高精度补偿。 相似文献