首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pei Shi Tin  Tai-Shung Chung  Ye Liu  Rong Wang 《Carbon》2004,42(15):3123-3131
The separation of CO2/CH4 separation is industrially important especially for natural gas processing. In the past decades, polymeric membranes separation technology has been widely adopted for CO2/CH4 separation. However, polymeric membranes are suffering from plasticization by condensable CO2 molecules. Thus, carbon molecular sieve membranes (CMSMs) with excellent separation performance and stability appear to be a promising candidate for CO2/CH4 separation. A commercially available polyimide, P84 has been chosen as a precursor in preparing carbon membranes for this study. P84 displays a very high selectivity among the polyimides. The carbonization process was carried out at 550–800 °C under vacuum environment. WAXD and density measurements were performed to characterize the morphology of carbon membranes. The permeation properties of single and equimolar binary gas mixture through carbon membranes were measured and analyzed. The highest selectivity was attained by carbon membranes pyrolyzed at 800 °C, where the pyrolysis temperatures significantly affected the permeation properties of carbon membranes. A comparison of permeation properties among carbon membranes derived from four commercially available polyimides showed that the P84 carbon membranes exhibited the highest separation efficiency for CO2/CH4 separation. The pure gas measurement underestimated the separation efficiency of carbon membranes, due to the restricted diffusion of non-adsorbable gas by adsorbable component in binary mixture.  相似文献   

2.
Thin palladium membranes of different thicknesses were prepared on sol‐gel derived mesoporous γ‐alumina/α‐alumina and yttria‐stabilized zirconia/α‐alumina supports by a method combining sputter deposition and electroless plating. The effect of metal‐support interface on hydrogen transport permeation properties was investigated by comparing hydrogen permeation data for these membranes measured under different conditions. Hydrogen permeation fluxes for the Pd/γ‐Al2O3/α‐Al2O3 membranes are significantly smaller than those for the Pd/YSZ/α‐Al2O3 membranes under similar conditions. As the palladium membrane thickness increases, the difference in permeation fluxes between these two groups of membranes decreases and the pressure exponent for permeation flux approaches 0.5 from 1. Analysis of the permeation data with a permeation model shows that both groups of membranes have similar hydrogen permeability for bulk diffusion, but the Pd/γ‐Al2O3/α‐Al2O3 membranes exhibit a much lower surface reaction rate constant with higher activation energy, due possibly to the formation of Pd‐Al alloy, than the Pd/YSZ/α‐Al2O3 membranes. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

3.
Membranes composed of poly(vinylpyrrolidone)-poly(methacrylic acid) (PVP-PMAA) complexes appear to be suitable for pervaporation of water-n-propanol mixtures. The membranes are selective to water. The separation factor α increases with increasing content of propanol, wPrOH, and reaches a maximum value for wPrOH at about 0.8 in the case of PVP-rich membranes, and close to wPrOH = 1 for PMAA-rich membranes. All membranes exhibited maximum swelling at wPrOH of ca. 0.4. At constant wPrOH of 0.8 the value of α changes in a complicated manner with the composition of the membrane. Under this condition of constant wPrOH, α runs parallel with the swelling degree. A tentative explanation is proposed for results pertaining to membranes containing not too high excesses of PVP or PMAA.  相似文献   

4.
Diamond is a promising microelectromechanical systems (MEMS) material due to its high Young's Modulus and very large thermal conductivity. In this work, ultrananocrystalline diamond was stacked between silicon dioxide to form thermally-stable and robust membranes. These SiO2-stacked diamond layers were processed into MEMS-compatible membranes. For comparison, membranes composed of only SiO2 were fabricated as well. The structural characteristics of these membranes are compared and analyzed for membranes of different diameters. Using finite element modeling, the experimental behaviors of SiO2 and SiO2-stacked diamond membranes are analyzed.  相似文献   

5.
《Ceramics International》2023,49(6):8683-8708
Zirconia (ZrO2) membranes experienced rapid progress in applications demanding high-stability membranes own to their higher chemical resistance and hydrophilicity compared to silica and alumina. Moreover, ZrO2 membranes have increased fouling resistance, high permeability, and a long lifetime making them broadly applied in drinking water production, wastewater treatment, petrochemical, food, and beverages industries. However, fabricating ZrO2 membranes for Nanofiltration and Gas Separation is still challenging. This paper reviews the progress in fabricating ZrO2 membranes, focusing on strategies for achieving smaller pores without losing their high permeability and selectivity. The current state of the art in commercial ZrO2 membranes and the recent innovations in academia are critically reviewed. A comprehensive revision of sol-gel technique's critical synthesis and process parameters is presented along with the most recent molecular layer deposition method. This work aims to provide a guide for both starting and established researchers, thus filling a gap in the present literature.  相似文献   

6.
Most of the anhydrous proton conducting membranes are based on inorganic or partially inorganic materials, like SrCeO3 membranes or polybenzimidazole (PBI)/H3PO4 composite membranes. In present work, a new kind of anhydrous proton conducting membrane based on fully organic components of PBI and tridecyl phosphate (TP) was prepared. The interaction between PBI and TP is discussed. The temperature dependence of the proton conductivity of the composite membranes can be modeled by an Arrhenius relation. Thermogravimetric analysis (TGA) illustrates that these composite membranes are chemically stable up to 145 °C. The weight loss appearing at 145 °C is attributed to the selfcondensation of phosphate, which results in the proton conductivity drop of the membranes occurring at the same temperature. The DC conductivity of the composite membranes can reach ∼10−4 S/cm for PBI/1.8TP at 140 °C and increases with increasing TP content. The proton conductivity of PBI/TP and PBI/H3PO4 composite membranes is compared. The former have higher proton conductivity, however, the proton conductivity of the PBI/H3PO4 membranes increases with temperature more significantly. Compared with PBI/H3PO4 membranes, the migration stability of TP in PBI/TP membranes is improved significantly.  相似文献   

7.
Thin-film composite nanofiltration membranes were prepared by interfacial polymerization reaction of piperazine and trimesoylchloride on virgin and nanoparticles (SiO2/TiO2) modified Polyacrylonitrile/70:30 and 30:70 Polyacrylonitrile – Polyvinylidenefluoride blend ultrafiltration substrates. The membranes were characterized for surface hydrophilicity and potential, surface and cross-sectional morphology and equilibrium water content. Pure water permeability and differential rejection of multi (MgSO4) and monovalent salts (NaCl) of the membranes were studied. Nanofiltration (NF) membranes prepared on nanoparticle modified UF substrates exhibit higher flux than the membranes prepared on virgin UF substrates. NF membranes prepared on TiO2 modified substrates are exhibiting higher flux than the other membranes. Membrane prepared on TiO2 modified 70:30 blend substrate exhibits the highest rejection ratio (4.63) of divalent to monovalent salts. Nanofiltration membranes prepared on nanoparticle modified substrates are displaying comparatively higher flux recovery ratio (FRR) and lower total fouling ratio (TFR) values than the NF membranes prepared on virgin ultrafiltration substrates.  相似文献   

8.
Several sulfolanes such as 3-methylsulfolane, sulfolane, and 3-sulfolene were tested as modifiers in poly(trimethylsilyl methyl methacrylate) (PTMSMMA) and poly(trimethylsilyl propyne) (PMSP) to improve the selectivity of CO2. The gas permeabilities for the PTMSMMA-blend membranes containing high 3-methylsulfolane content were determined on a nonvacuum system in which the membranes started to be measured at their steady states at 30°C; those for all the other membranes were determined in a vacuum system in which those membranes were measured after they reached their unsteady states at 30°C. The PTMSMMA-blend membrane containing 40% 3-methylsulfolane was found to give the best separation of CO2 under the conditions in this study compared to all the PTMSMMA-blend membranes and the others prepared in our work; its ideal separation factors for CO2 over N2 were above 40 and its permeability coefficients of CO2 increased to above 250 Barrer. The modifications of PMSP membranes by impregnating with sulfolane and blending with sulfolene were found to be effective in improving the selectivity for CO2 over N2 for the PMSP membrane. The ideal separation factors for CO2 over N2 for the modified PMSP membranes impregnated with 30% sulfolane and blended with 25% 3-sulfolene were improved to above 10 and 13, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Removal of CO2 by membrane technologies is one promising approach as compared to other CO2 capture technologies due to advantages such as simpler operation, higher reliability, lower capital and operating cost, higher energy efficiency, and a cleaner process. In the field of CO2 gas separation, inorganic membranes have been attracting a lot of attention. Three classes of microporous membrane family, i.e. microporous silica membranes, microporous carbon membranes and zeolite membranes, have been widely studied due to their potential in separating CO2 gas molecules, contributed by their distribution of selective micropores which are almost identical to the required molecular sizes for diffusing CO2 gas. This paper review various methods to fabricate the above three types of microporous membranes, at the same time, looking at other researchers employing these methods to fabricate microporous membranes for CO2 separation.  相似文献   

10.
Porous oxide membranes of γ-alumina, zirconia and silica were prepared on porous α-alumina tubes by sol-gel processes. γ-Alumina and zirconia membranes impregnated with platinum were also prepared. The permeation properties of these membranes were investigated by using unary and binary feeds of H2 and CO2 at 423 K. After permeation for 5 h with humidification at a concentration of 3 mol%, no large changes were found for the zirconia and γ-alumina membranes, but the permeances to H2 and CO2 for the silica membrane were decreased by 10–20%. A 70-h exposure to humidified feeds showed that the zircomaand γ-alumina-based membranes were more resistant than the silica membrane. The decrease in H2 permeance was only 5% for the zirconia-based membranes and 17.4% for the silica membrane. The Pt-loaded gg-alumina membrane remained defect-free after one-month of exposure to the humidified feeds at 423 K.  相似文献   

11.
Thiol-functionalized mesoporous poly (vinyl alcohol)/SiO2 composite nanofiber membranes and pure PVA nanofiber membranes were synthesized by electrospinning. The results of Fourier transform infrared (FTIR) indicated that the PVA/SiO2 composite nanofibers were functionalized by mercapto groups via the hydrolysis polycondensation. The surface areas of the PVA/SiO2 composite nanofiber membranes were >290 m2/g. The surface areas, pore diameters and pore volumes of PVA/SiO2 composite nanofibers decreased as the PVA content increased. The adsorption capacities of the thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes were greater than the pure PVA nanofiber membranes. The largest adsorption capacity was 489.12 mg/g at 303 K. The mesoporous PVA/SiO2 composite nanofiber membranes exhibited higher Cu2+ ion adsorption capacity than other reported nanofiber membranes. Furthermore, the adsorption capacity of the PVA/SiO2 composite nanofiber membranes was maintained through six recycling processes. Consequently, these membranes can be promising materials for removing, and recovering, heavy metal ions in water.  相似文献   

12.
Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects of TiO2 and SiO2 NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin-film nanocomposite (TFN) PA membranes were fabricated using similarly sized TiO2 15 nm and SiO2 (10 – 20 nm) NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition of TiO2 and SiO2 , respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4 and NaCl ) and OM (humic acid [HA] and tannic acid [TA]). The addition of TiO2 and SiO2 nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection of MgSO4 , especially for TiO2 membranes. The addition of TiO2 and SiO2 to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.  相似文献   

13.
Currently, the rising environmental concerns caused by nonbiodegradable food packaging materials have promoted the research and development of biodegradable alternatives. Polyvinyl alcohol (PVA) was selected as the substrate, and zinc oxide nanoparticles (ZnONPs) and titanium dioxide nanoparticles (TiO2NPs) were blended and modified with PVA, respectively. Based on the electrostatic spinning technology to prepare fiber membranes with high strength and UV blocking properties for grapes preservation. The study indicated that the tensile strength of PVA fiber membranes increased by 243% and 209% when ZnONPs and TiO2NPs were added at 1%, respectively. Under UV radiation, the PVA/ZnO composite membranes exhibited superior UV absorption than the PVA/TiO2 composite membranes. After conducting TG tests, it was found that the addition of ZnONPs decreased the thermal stability of the fiber membranes, while TiO2NPs could improve the thermal stability. Both composite membranes could extend grapes' shelf life, but the PVA/ZnO composite membranes were more effective at maintaining freshness than the PVA/TiO2 composite membranes.  相似文献   

14.
《分离科学与技术》2012,47(15):3071-3091
Abstract

NH4Y zeolite‐filled chitosan membranes were developed for the separation of water‐isopropanol mixture using pervaporation process. The NH4Y zeolite‐filled chitosan membranes were prepared using a solution technique with the variation of NH4Y zeolite loading (0, 0.1, 0.2, 0.3, 0.4, 0.5 wt.%). The membranes morphologies were studied using Scanning Electron Microscopy (SEM) and the membranes mechanical strength were tested using the parameter of tensile strength and percent strain at maximum. The effects of NH4Y zeolite loading on the liquid sorption characteristics and pervaporation performance were also evaluated. The diffusion coefficient of water and isopropanol for the chitosan membranes at different NH4Y zeolite loading is estimated. The presence of NH4Y zeolite in the chitosan membranes caused non‐homogeneous dispersion of NH4Y zeolite crystals and membrane swelling due to its hydrophilic properties. However, the presence of NH4Y zeolite was able to improve both tensile strength and percent strain at maximum of chitosan membranes. The presence of NH4Y zeolite also increased the total permeation flux and separation factor simultaneously. The Pervaporation Separation Index shows that 0.2 wt.% of NH4Y zeolite‐filled membrane gave the optimum performance in the pervaporation process. The diffusion coefficient estimated proves that the membranes were highly water selective.  相似文献   

15.
Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO2 were prepared in this work. However, the preparation of PBI/SiO2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO2 is hydrophilic due to the hydrophilicity of nano-SiO2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO2 composite membranes with up to 15 wt% SiO2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 × 10−3 S/cm at 180 °C.  相似文献   

16.
In recent years, great progress has been made in the development of proton‐exchange membrane fuel cells (PEMFCs) for both mobile and stationary applications. This review covers two types of new membranes: (1) carbon dioxide‐selective membranes for hydrogen purification and (2) proton‐exchange membranes; both of these are crucial to the widespread application of PEMFCs. On hydrogen purification for fuel cells, the new facilitated transport membranes synthesized from incorporating amino groups in polymer networks have shown high CO2 permeability and selectivity versus H2. The membranes can be used in fuel processing to produce high‐purity hydrogen (with less than 10 ppm CO and 10 ppb H2S) for fuel cells. On proton‐exchange membranes, the new sulfonated polybenzimidazole copolymer‐based membranes can outperform Nafion® under various conditions, particularly at high temperatures and low relative humidities. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Ordered mesoporous silica/carbon composite membranes with a high CO2 permeability and selectivity were designed and prepared by incorporating SBA-15 or MCM-48 particles into polymeric precursors followed by heat treatment. The as-made composite membranes were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and N2 adsorption, of which the gas separation performance in terms of gas permeability and selectivity were evaluated using the single gas (CO2, N2, CH4) and gas mixtures (CO2/N2 and CO2/CH4, 50/50 mol.%). In comparison to the pure carbon membranes and microporous zeolite/C composite membranes, the as-made mesoporous silica/C composite membranes, and the MCM-48/C composite membrane in particular, exhibit an outstanding CO2 gas permeability and selectivity for the separation of CO2/CH4 and CO2/N2 gas pairs owing to the smaller gas diffusive resistance through the membrane and additional gas permeation channels created by the incorporation of mesoporous silicas in carbon membrane matrix. The channel shape and dimension of mesoporous silicas are key parameters for governing the gas permeability of the as-made composite membranes. The gas separation mechanism and the functions of porous materials incorporated inside the composite membranes are addressed.  相似文献   

18.
Sulfonated polysulfone (SPS) membranes were prepared, and the gas‐transport properties of the resulting ionic polymers were examined. Gas‐transport measurements were made on dense films of these polymers with a continuous flow technique. The sulfonation of polysulfone and the metal‐cation exchange of SPS were confirmed with Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis. The SPS membranes exchanged with the monovalent metal ions showed higher permeability coefficients than the SPS membranes exchanged with the multivalent metal ions, whereas the selectivities of all the metal‐cation‐exchanged sulfonated polysulfone (MeSPS) membranes for O2/N2 and CO2/N2 gas pairs were higher than those of SPS membranes. When the MeSPS membranes with metal cations of similar ionic radii were compared, the ideal selectivities of O2/N2 and CO2/N2 through MeSPS with divalent cations were higher than those through MeSPS with monovalent cations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2611–2617, 2002  相似文献   

19.
《分离科学与技术》2012,47(6):859-866
Binary and ternary component mixed matrix membranes comprised of zeolite 4A and p-nitroaniline (pNA) in the polycarbonate (PC) matrix were prepared and appraised in gas separation. For comparison, homogenous membranes of PC and PC/pNA membranes were also investigated. The membranes were utilized to separate binary mixtures of CO2/CH4, H2/CH4, and CO2/N2. The effect of feed composition on the separation performance of membranes was investigated. Separation factors and ideal selectivities were similar for the PC membrane. A similar trend was also observed with the PC/pNA membrane. The separation factors of the PC/pNA membrane for CO2/CH4 were almost twice as high as those of the PC membrane regardless of the feed composition. The ideal selectivities were, however, higher than separation factors for PC/zeolite 4A and PC/pNA/zeolite 4A membranes. The PC/ pNA/zeolite 4A membrane has separation factors of 18 for 77% CO2/ 23% CH4 mixture, and 40 for 20% CO2/ 80% CH4 mixture, respectively. The separation factors of the mixed matrix membranes depended on the feed composition strongly. The PC/ pNA/zeolite 4A membrane had higher separation factors and lower permeabilities than the PC/zeolite 4A membrane. pNA assisted to eradicate partly the detrimental effects of interfacial voids and improved the molecular sieving effect of zeolite 4A dispersed in the PC.  相似文献   

20.
《分离科学与技术》2012,47(9):1395-1404
Polymer membranes filled with magnetic powder and magnetized, used for an air enrichment, are investigated. Various polymer matrix with different types and granulation of dispersed magnetic powder were used for the preparation of the membranes. All membranes were examined for N2, O2, and air permeability. Mass transport coefficients were evaluated basing on Time Lag methods and D1-D8 system. Structure and morphology of the obtained membranes were investigated using fractal analysis. Box counting method for calculating generalized fractal dimension was applied. Obtained results allowed to optimize the preparation procedure of magnetic membranes with the best permeation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号