首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
三元配煤矿物因子对煤灰熔融特性影响及熔融机理   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究配煤中矿物组成对煤灰熔融特性的影响,选取煤灰化学组成和煤灰熔融温度差异较大的3个原煤a,b,c进行三元配煤实验,利用X射线衍射(XRD)及X射线荧光光谱法(XRF)分别测定了煤样矿物组成和煤灰化学成分,并对高温煤灰熔融机理进行研究。结果表明:引入矿物因子(MF)来表征煤样矿物组成(耐熔矿物、助熔矿物)对高温煤灰熔融特性的影响具有一定的可靠性。高温下低灰熔融温度矿物钙长石钙含量的升高与高灰熔融温度莫来石矿物含量的减少共同导致了煤灰熔融温度的降低;在煤灰流动温度左右,钙长石物相最强衍射峰强度的高低以及低温共熔物相对含量的高低与煤灰流动温度呈现一定的负相关性,石英和莫来石则相反。  相似文献   

2.
吕俊复  史航  吴玉新  姚伟  刘青  张海 《煤炭学报》2021,46(1):263-273
准东煤田预测储量高,准东煤灰具有高硫,低硅铝,高碱/碱土金属等特点,实际燃用准东煤锅炉出现了严重的沾污、结渣现象,影响准东煤的大规模开发利用。烟气气氛(含有大量SO2,SO3)可能影响高温下Na2SO4的生成/分解,从而影响煤灰的熔融过程。深入研究烟气气氛对准东煤灰熔融特性的影响,有助于加深对锅炉结渣过程的理解,为燃用准东煤锅炉结渣防控提供技术支持。为获得烟气气氛对准东煤灰熔融特性的影响规律,建立了单热电偶高温显微观察系统(SHTT),比较了还原性气氛、氧化性气氛、惰性气氛及模拟烟气气氛下准东煤灰的熔融特性。结果表明,建立的灰熔融温度测试方法精度较好,96.92%的灰样熔融温度与标准灰熔点仪测得的流动温度相比偏差在3%以内(≤40℃),最大偏差<50℃,测试偏差在煤灰熔融特性测试允许误差范围内。当碱酸比R<2.5时,气氛对灰熔融特性无显著影响;当R>2.5时,煤灰组分中Fe2O3质量分数较高,导致还原性气氛下灰熔点降低。烟气中SO2对煤灰熔融温度的影响与煤灰组分相关,当R>2.5时,煤灰中碱/碱土金属及硫(AAEM/S)质量分数较高,烟气中SO2会抑制煤灰中CaSO4的分解,提升高温下煤灰中CaO质量分数,并减少长石,辉石等低熔点矿物的生成,进而提升煤灰熔融温度。烟气中SO2是促进富含Na/Fe硫酸盐或硫化物超细颗粒生成及沉积的重要因素。  相似文献   

3.
以枣庄烟煤、枣庄无烟煤、济宁煤、东北煤、胜利煤和准东次烟煤等为原料,测定其发热量、煤灰熔融温度及煤的粘度,并对结果进行了分析比较。分析了化学组分等对煤灰熔融性温度及粘度的影响,高温下煤灰熔融性、煤灰的粘温特性对煤气化炉的设计、稳态运行及煤种适应性评价具有十分重要的意义。  相似文献   

4.
煤灰熔融性是动力用煤和气化用煤的重要性能指标,研究煤灰熔融特性的影响因素及其调控方法对动力煤的有效利用具有重要意义,而煤灰熔融性的准确测量有利于实际生产控制。采用5E-AF 7000高灰熔融性测定仪对煤气化装置中使用的典型煤种进行多组数据分析,可为灰熔融流动温度大于1 500℃的气化煤提供灰熔融性的准确测定数据。通过大量的实验对比以及仪器自动识别准确度、弱还原性气氛下的测试比对、精密度分析,验证了5E-AF 7000高灰熔融性测定仪在满足国标的前提下可将特征温度测定延伸至1 720℃,能对煤气化装置中使用的高熔融性气化煤进行准确测试;其放大视频模式可对数据进行自动判断,减少人工判别时的个人误差。高灰熔融性测定仪的投入使用可为煤气化装置的选煤、用煤提供可靠的灰熔融性分析数据。  相似文献   

5.
针对晋城煤灰熔融性温度较高的特点,为使其满足液态排渣气化工艺需求,利用添加石灰石进行降低晋城煤灰熔融性温度试验,根据灰比及灰中氧化钙(CaO)含量确定适宜的添加比例,使煤灰熔融性温度降低至气化炉能够接受的程度,并测试添加适宜比例石灰石后煤样的黏温特性。试验结果表明:煤中灰成分对晋城煤灰熔融性有较大影响,添加不同量的CaO助熔剂对晋城煤灰的灰熔融性、黏度特性影响显著。随着CaO助熔剂剂量的增加,煤的灰熔融性温度不断降低,但降至一定的温度值后,随着助熔剂量的增加其灰熔融性温度变化不大。通过添加CaO助熔剂,在保证进入干煤粉气化炉的灰分和发热量满足要求前提下,可降低晋城煤的灰熔融性温度,满足干煤粉气化炉的技术要求。  相似文献   

6.
简述新疆达拉布特一号矿地质概况,结合煤类判别对其B13煤层和B14煤层的灰分、硫分、发热量、煤灰成分、煤灰熔融特性、微量元素等主要煤质特征进行分析;基于固定床、流化床、气流床气化用煤对煤质要求,探析达拉布特一号矿区煤的气化适应性,以期清洁高效利用该矿主采煤层资源。研究结果表明:达拉布特一号矿主采煤层煤炭以长焰煤为主,局部位置有分布不均的不黏煤,B13煤层和B14煤层主要为低灰、特低硫、中高发热量、低磷、特低氟、特低氯煤,主采煤层煤灰成分以SiO_2为主,其次为CaO和Al_2O_3,煤灰熔融性属于较低软化温度灰以及较低流动温度灰;B13、B14煤层煤的灰分与硫分均较低,微量元素含量较低可有利于气化净化及废水的处理,煤灰熔融性温度较低可满足气化炉液态排渣的要求,其适合作为气化用煤。  相似文献   

7.
煤灰熔融性是制约德士古气化炉长周期安全运转的重要因素。通过研究添加煤矸石、残碳对宁东不粘煤灰熔融特性的影响来探究提高煤灰熔融温度的方法。结果表明,添加残碳可以提高煤灰熔融温度,但不同来源的残碳对煤灰熔融温度影响各异,添加残碳导致煤灰熔融温度升高的原因是有碳硅石生成;添加矸石不能有效提高煤灰熔融温度。  相似文献   

8.
采用控制变量法逐个改变模拟灰中各化学组成含量,通过灰熔融性试验来研究府谷煤灰中SiO2、A12O3、Fe2O3、MgO和CaO对灰熔融性的影响,并利用XRD图谱对添加不同含量CaO的府谷煤灰中物相组分进行了分析.结果表明,Fe2O3和MgO能降低灰的熔融温度,SiO2、Al2 O3和CaO对灰熔融点的具有双重影响性.CaO在一定范围内可显著降低府谷煤灰的熔融温度,在加热过程中与莫来石、SiO2等反应生成多种高含钙化合物,各物质之间会形成低温共熔化合物,造成灰熔点降低;当钙含量过高时,CaO与方石英、钙长石反应生成假硅灰石、钙黄长石,使灰熔点升高.  相似文献   

9.
《煤炭技术》2016,(9):311-313
分析弱还原环境、强还原环境等对熔融温度的影响,通过改变Si O2与Ca O等碱性氧化物含量,分析煤灰成分对熔融温度的影响。引入矿物因子表示煤灰矿物组成,实验结果显示,煤灰熔融温度随着矿物因子增大而增大,两者呈现正相关关系。  相似文献   

10.
对火力发电厂所燃用的神华混煤和准格尔煤的煤灰熔融性等煤质特性做了初步分析,并对未掺烧前发生的因煤灰熔融温度低而导致的事故进行分析及提出应对策略。同时,利用神华混煤与准格尔煤性质稳定的优点,通过对掺烧后的入炉煤干基灰分与煤灰熔融性的关系进行实验统计和分析,提出以入炉煤千基灰分对煤灰熔融性进行监控和掺烧煤配比的调整,实现锅炉的安全稳定经济运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号