首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为确定平行钻孔瓦斯抽采合理钻孔间距,通过推导煤层瓦斯运移方程、煤岩体变形方程及渗流场与应力场耦合方程,建立了瓦斯抽采流固耦合模型;根据某矿21219工作面实际地质条件,利用COMSOL Multiphysics软件对平行钻孔间抽采叠加效应影响下瓦斯压力、有效抽采半径的变化规律进行了数值模拟研究,并结合钻孔有效抽采半径,得出了合理的钻孔间距。数值模拟结果表明,随着钻孔间距的增大,抽采后煤体瓦斯压力增大;随着煤体距钻孔距离减小,煤体瓦斯压力呈先缓慢减小、后快速下降的趋势;随着抽采时间的增加,瓦斯压力不断降低,钻孔有效抽采半径变大。现场应用结果验证了钻孔间距布置的合理性。  相似文献   

2.
针对单一水力割缝对于低透气性厚煤层或存在夹矸煤层的增透卸压效果不理想的问题,以冀中能源有限公司东庞煤矿21212工作面为研究背景,提出了上下煤层水力割缝协同卸压增透技术:根据煤层具体构造,在上下煤层各自进行一次水力割缝施工,上下煤层的2个槽缝产生的裂缝继续起裂、扩展与延伸,致使水力割缝孔之间的煤体裂隙充分发育,形成互相贯通的立体裂隙网络,产生协同卸压增透作用,扩大有效抽采半径。为更加合理布置水力割缝试验孔间距,采用FLAC 3D软件建立了水力割缝协同卸压物理模型,确定了水力割缝水压为30MPa、出煤量为4.5m~3(缝宽为0.3m,缝深为1.57m,上下煤层双割缝)和出煤量为6m~3(缝宽为0.3m,缝深为1.78m,上下煤层双割缝)的煤岩的理论有效抽采半径分别为4.5m和4.8m。为确定水力割缝的增透效果,对比了出煤量为4.5m~3的试验孔S1和出煤量为6m~3的试验孔S2与不割缝钻孔的抽采效果,结果表明:不割缝钻孔的平均瓦斯抽采体积分数为22.38%,平均瓦斯抽采纯量为0.206m~3/min;割缝钻孔S1的平均瓦斯抽采体积分数为75.73%,平均瓦斯抽采纯量为0.382m~3/min;割缝钻孔S2的平均瓦斯抽采体积分数为86.91%,平均瓦斯抽采纯量为0.454 9m~3/min。与不割缝钻孔相比,采用水力割缝增透措施后,煤层透气性得到很大提高,瓦斯抽采体积分数提高了约4倍,瓦斯抽采纯量提高了2倍左右,瓦斯抽采效果好。根据瓦斯压力降低法实测有效抽采半径,可得出煤量为4.5,6m~3的水力割缝的有效抽采半径与抽采时间的关系,抽采时间为30,60,120,180d时,出煤量为4.5m~3的水力割缝的有效抽采半径为4.9,5.5,6.1,6.5m,出煤量为6m~3的水力割缝的有效抽采半径为5.1,5.6,6.3,6.7m。综合考虑,最后得到了适合东庞煤矿的水力割缝技术施工参数:出煤量为4.5m~3,抽采时间为60d,有效抽采半径为5.5m,钻孔间距为7.7m。  相似文献   

3.
为解决含夹矸煤层瓦斯抽采钻孔的合理布置问题,通过建立瓦斯抽采的煤岩体变形控制方程、瓦斯运移控制方程和孔隙率与渗透率演化方程,结合瓦斯抽采的初始及边界条件,推导出了瓦斯抽采固气耦合模型。利用多物理场分析软件COMSOL Multiphysics,并结合某矿IV13煤层的实际地质条件,对煤层单一抽采钻孔周围煤体的瓦斯压力、渗透率、位移的分布规律进行了数值模拟与分析,确定了含夹矸煤层瓦斯抽采钻孔的孔间距,从而为含夹矸煤层抽采钻孔的优化布置提供了依据。研究结果表明,在瓦斯抽采过程中,随着煤体距钻孔距离的减小,煤层不含夹矸时钻孔周围煤体瓦斯压力下降幅度、渗透率上升幅度最小,钻孔周围煤体位移量最大;钻孔未穿过夹矸时钻孔周围煤体瓦斯压力下降幅度、渗透率上升幅度最大,钻孔周围煤体位移量最小。  相似文献   

4.
《工矿自动化》2019,(11):42-48
为了研究深部煤体蠕变对瓦斯渗流的影响,建立了考虑蠕变作用下煤体变形场、瓦斯扩散场及瓦斯渗流场多场耦合的数学模型,以陕西彬长胡家河矿业有限公司煤层瓦斯赋存及地质条件为依据,模拟分析了煤层瓦斯抽采动态变化规律,通过现场监测验证了数学模型的正确性、合理性、可靠性及工程适用性。研究结果表明:①煤层瓦斯压力随距抽采钻孔距离的增加而增大,距钻孔越近,瓦斯压力梯度越大,煤体渗透率比值越大,在远离钻孔处瓦斯压力和渗透率比值均逐渐趋于稳定。②在瓦斯抽采初期,距钻孔越近煤体的瓦斯压力降低幅度越大,随着抽采时间延长,瓦斯压力降低的幅度逐渐变缓;在瓦斯抽采初期,距钻孔较近煤体的渗透率比值增加幅度较大,随着抽采时间的延长,在应力和瓦斯压力共同作用下,煤体的蠕变变形导致渗透率比值增加的趋势趋于平缓。③与单孔瓦斯抽采相比,双孔抽采可显著降低煤层瓦斯压力;钻孔间距越小,不同抽采时间内两钻孔间的瓦斯压力梯度越小,但随着抽采时间延长,瓦斯抽采效率越低;结合陕西彬长胡家河矿业有限公司瓦斯赋存条件,确定其瓦斯抽采钻孔最合理间距为2m。  相似文献   

5.
为研究水力割缝强化瓦斯抽采技术在含夹矸煤层中的应用,通过理论分析得出,与普通钻孔相比,水力割缝钻孔可通过增加煤层渗透率、煤体暴露面积、瓦斯流动通道3个方面强化瓦斯抽采,并建立了考虑孔隙率和渗透率变化的煤层瓦斯流动控制方程。以东庞矿21218工作面为工程背景,采用COMSOL数值模拟软件建立了含夹矸煤层水力割缝瓦斯抽采数值模型,通过对煤层瓦斯流动控制方程进行解算,研究了不同割缝高度、不同钻孔间距条件下,水力割缝瓦斯抽采钻孔的瓦斯压力分布规律,从而确定了上煤层割缝0.3 m、下煤层割缝0.1 m、钻孔间距7.5 m的水力割缝瓦斯抽采钻孔施工参数。基于上述参数,在东庞矿21218工作面现场施工28组、每组7个水力割缝钻孔,对含夹矸煤层瓦斯进行抽采作业,结果表明:与普通钻孔相比,水力割缝钻孔的每百米巷道施工工程量减少了28.51%,瓦斯抽采纯量由11.53万m3提升至21.43万m3,增幅为85.86%,巷道掘进期间掘进工作面平均瓦斯体积分数由0.06%降至0.01%,瓦斯抽采效果好,且有效提高了瓦斯抽采效率。  相似文献   

6.
《工矿自动化》2016,(7):25-29
在煤层瓦斯流动理论和弹性力学基础上,考虑煤体渗透率变化对瓦斯流动的影响,建立了含瓦斯煤岩渗流-应力耦合数学模型,根据该模型对COMSOL Multiphysics数值模拟软件进行二次开发,以某突出矿井为例建立了煤层钻孔瓦斯抽采模型,并进行求解计算,结果表明煤层瓦斯压力、煤体渗透率均随抽采时间的增加而逐渐降低,钻孔有效抽采半径随抽采时间的增加而逐渐扩大,但均具有一定的时效性;采用压力法进行现场测试,实测结果与模拟结果基本一致,证明了含瓦斯煤岩渗流-应力耦合数学模型的正确性及采用数值模拟方法计算煤层钻孔有效抽采半径的可行性。  相似文献   

7.
倪兴 《工矿自动化》2023,(1):146-152
针对低透高瓦斯煤层在水力割缝过程中存在割缝扰动范围不清、割缝钻孔最佳布孔间距不明确的问题,以贵州豫能高山煤矿1908工作面为研究背景,在建立水力割缝煤体瓦斯抽采流固耦合模型的基础上,借助COMSOL数值模拟软件对高山煤矿1908工作面水力割缝钻孔有效抽采半径、孔周瓦斯压力变化情况进行了研究,并依据模拟结果深入分析了水力割缝钻孔在多孔布置时,受孔间抽采叠加效应影响下有效抽采范围及孔间瓦斯压力变化情况,最终得出其最佳布孔间距及抽采时间。结果表明:(1)水力割缝钻孔单孔抽采效果随割缝深度显著提升,但钻孔有效抽采半径增速变缓,为得到最佳割缝深度,对各钻孔有效抽采半径进行三项式拟合,随着水力割缝深度的增加,有效抽采半径范围在快速增加后放缓且最终趋于平稳,并得出了高山煤矿最佳割缝深度为1.5 m,有效抽采半径达为3.1 m。(2)在相同抽采时间下,煤体内瓦斯压力随两孔距的缩短而降低,说明孔间距越小,孔间受水力割缝所造成的扰动越剧烈,抽采叠加效应影响越显著。(3)在保证消突达标的前提下,选择孔距为7 m进行水力割缝钻孔布置效果最佳。(4)原本在“正方形”布孔方式中,孔心位置可能出现抽采盲区的点最大瓦...  相似文献   

8.
针对目前水力冲孔技术研究较少考虑倾斜煤层水力冲孔卸压范围随方向变化的特点及煤层倾角对水力冲孔卸压有效半径影响的问题,以某煤矿3号煤层为研究对象,利用多物理场耦合数值模拟软件COMSOL Multiphysics对倾斜煤层水力冲孔有效影响半径进行了数值模拟,研究了不同方向上的钻孔有效抽采半径。数值模拟结果表明:在冲孔作用下,抽采影响范围随抽采时间的增加而不断扩大,但扩展速度随时间下降;在冲孔卸压作用下,煤层渗透性大大增加,钻孔周边影响范围呈近似椭圆形分布;连续抽采90 d后,上部方向的影响半径为6 m左右,下部方向的影响半径为4 m左右,水平方向的影响半径为5 m左右;为了确保抽采达标,该煤层水力冲孔钻场横向钻孔布置间距设定为3.5 m左右,纵向钻孔布置间距为4.0 m左右。该研究结果对于优化水力冲孔工艺参数、指导抽采钻孔的准确布置、提升矿井的瓦斯治理效果具有重要的现实意义。  相似文献   

9.
为解决试验矿井采用传统抽采技术存在巷道掘进速度慢、采掘接替紧张的问题,提出采用深孔定向钻进瓦斯抽采技术施工定向长钻孔替代常规钻孔进行煤层瓦斯抽采的方案。定向钻进对煤层有效作用面积大,可以大范围改变煤体原始应力的分布,从而打破煤层瓦斯吸附-解吸的动态平衡,使大量吸附态瓦斯转化为游离态;在钻孔负压与煤体地应力和瓦斯压力形成的压力梯度作用下,游离态瓦斯源源不断地流向钻孔空间,使周围煤体瓦斯得到有效排放,煤体发生收缩变形,透气性系数大幅增加,地应力与瓦斯压力梯度减小,从而使得定向长钻孔抽采影响范围扩大,实现煤层瓦斯大面积有效抽采。试验结果表明:采用深孔定向钻进技术施工定向长钻孔成孔良好,试验钻孔总进尺为2 213m,主孔最大孔深达523m,日均抽采纯量为3 528m~3;钻孔平均瓦斯抽采体积分数高达88.3%,最高为98.0%;单孔平均瓦斯抽采纯量为1.23m~3/min,最大超过2m~3/min,瓦斯抽采效果显著;与常规钻孔抽采相比,定向钻孔单孔瓦斯抽采纯量提高了16倍多,单孔瓦斯抽采体积分数提高了2~4倍,巷道月均进尺提高了1倍多。  相似文献   

10.
薛湖煤矿二2煤层瓦斯含量高、透气性差,采用顺层钻孔治理煤层瓦斯存在瓦斯抽采效果差、抽采达标时间长等问题,将超高压水力割缝技术应用于该煤层钻孔瓦斯抽采中。通过单因素试验确定了适用于薛湖煤矿二2煤层的超高压水力割缝优化工艺参数:割缝压力为60~70 MPa,割缝时间为25 min,割缝转速为80 r/min,割缝间距为2 m。现场应用采用该工艺参数的超高压水力割缝技术后,割缝钻孔与普通钻孔相比,前者日均瓦斯抽采体积分数约为后者的1.75倍,日均瓦斯抽采纯量为后者的3.25倍,瓦斯抽采达标时间缩短了约42%,残余瓦斯含量小。  相似文献   

11.
针对采用单一顺层普通钻孔或定向钻孔预抽煤巷条带瓦斯时存在普通钻机施工长钻孔易偏离轨迹、定向钻机施工成本较高等问题,以青龙煤矿21601掘进工作面为研究背景,提出了采用普通钻孔和定向钻孔联合预抽煤巷条带瓦斯。数值模拟结果表明:单钻孔预抽瓦斯时,抽采初期钻孔终孔位置处钻孔轴向瓦斯压力等值线呈“V”形分布,随着抽采时间延长,瓦斯压力“V”形分布逐渐平滑;钻孔径向瓦斯压力以钻孔为中心呈环状依次向外递增;预抽93 d时的有效抽采半径达3.80 m;普通钻孔和定向钻孔可分别有效控制煤巷两帮15 m和煤巷掘进工作面前方200 m范围内瓦斯。现场应用结果表明:普通钻孔和定向钻孔联合预抽时,瓦斯抽采总量平均值为19.86×10^3 m^3,瓦斯抽采体积分数平均值为53.5%,瓦斯抽采纯流量平均值为1.97 m^3/min,瓦斯抽采混合流量平均值为3.68 m^3/min,残余瓦斯含量小于8 m^3/t,瓦斯抽采效果良好。  相似文献   

12.
针对钻孔内瓦斯流动变质量流的特点及钻孔变形情况,建立了综合考虑钻孔负压动态变化的瓦斯抽采固-流耦合模型,并以新安煤矿为例,采用多物理场耦合软件Comsol Multiphysics对钻孔不同变形失稳时抽采负压分布进行了数值模拟研究。结果表明:①完整孔孔口、孔底附近煤层瓦斯分布基本相同,抽采负压损失较小。②钻孔塌孔时,仅塌孔段附近煤层瓦斯分布与完整孔稍有不同,总负压损失比完整孔大,但与孔口负压相比仍较小。③钻孔堵孔时,孔口、孔底周围煤层瓦斯分布差异巨大,钻孔有效抽采长度缩短,堵孔段附近煤层出现抽采空白带;完整段抽采压力变化相对较小且仍为负压,堵孔段抽采压力变成正值,且越靠近钻孔底部越接近附近煤层瓦斯压力。现场测试结果表明完整孔抽采负压损失较小,且随抽采时间的延长而变小,与数值模拟结果一致。  相似文献   

13.
以成庄矿为例,分析了定向钻进技术在顺层钻孔抽采实体煤、高位钻孔抽采采空区、跨破碎带抽采待掘区域等方面的应用,研究了基于定向钻进技术的综合立体瓦斯抽采模式:针对实体煤层采用顺层递进模块式抽采技术,通过长时间、大范围抽采及预抽模块、掘进工作面、回采工作面的循环递进,实现回采煤量和抽采煤量的良性接替;针对"U"型通风上隅角瓦斯集聚区域采用顶板高位定向钻孔抽采技术,高位定向钻孔通过裂隙带与上隅角构成连通系统,采空区内瓦斯通过裂隙被钻孔抽出,从而降低采空区内瓦斯浓度;针对破碎煤层采用煤-岩-煤型顶板梳状定向钻孔技术,主孔布置于顶板中,钻孔跨越破碎煤体后施工梳状分支钻孔进入煤层,从而掩护下一阶段巷道掘进;针对煤层积水情况采用顶抽气-底排水组合式梳状定向钻孔技术,煤层中积水排采钻孔和顶板中瓦斯抽采钻孔在空间上实现水-气流场联通,煤层孔排水降压后利于顶板孔抽采瓦斯。采用该瓦斯抽采模式后,成庄矿瓦斯抽采率达60%以上。  相似文献   

14.
针对大直径瓦斯抽采钻孔密封方法采用固体材料封孔初期密封效果好,但随着时间推移,存在封孔变形破坏后的钻孔抽采瓦斯浓度急速衰减的问题,提出了一种大直径瓦斯抽采钻孔非凝固膏体材料封孔技术。该技术利用膨胀水泥与非凝固膏体材料配合形成多段"固、液、固"结构,利用膨胀水泥材料形成三段固体封孔段,然后在不同抽采时间段在固体封孔段中注入非凝固膏体材料,实现了钻孔抽采全过程的有效密封及抽采不同时间段的二次、多次封孔。基于大直径钻孔孔周裂隙半径的理论分析结果,对最佳注浆压力和黏度的关系进行了数值模拟,研究了非凝固膏体材料封孔的相关技术参数,得到最佳注浆压力为1.2 MPa,最佳黏度为0.001~0.03 Pa·s。根据研究得到的注浆压力和黏度研制了一种封孔设备,设备利用"固、液、固"技术原理形成多段封孔结构,实现了固封液、液封气的抽采封孔模式。现场工业试验结果表明,大直径瓦斯抽采钻孔非凝固膏体材料封孔技术利用膏体材料具有随钻孔时空变化的特征,能有效解决固体材料封孔因钻孔变形而形成新裂隙,造成封孔失败、抽放浓度衰减过快的难题,且二次补浆后抽采体积分数能提升10%左右,有效提高了瓦斯抽采率。  相似文献   

15.
采空区覆岩断裂带有效抽采层位是布置高位抽采钻孔治理邻近层和采空区瓦斯的基础。基于关键层理论,建立了断裂带有效抽采层位数学模型,确定了有效抽采层位上下边界:有效抽采层位的下边界为采空区垮落带之上的第1层关键层,上边界为采空区上覆岩层高度为10倍采高以下的第1层关键层,有效抽采层位包含下边界岩层,不包含上边界岩层。根据断裂带有效抽采层位数学模型计算得出段王煤矿8+9号煤层断裂带有效抽采层位为煤层顶板上方12.6 m处的中砂岩到39.3 m处的4号煤;根据采空区覆岩断裂带钻孔窥视结果,得出工作面断裂角约为62°,破断断裂带高度范围为煤层顶板上方11.5~40.5 m区域。在段王煤矿进行高位钻孔抽采试验,得出实际的断裂带有效抽采层位为煤层顶板上方13.9 m处的中砂岩到37.4 m处的砂质泥岩。钻孔窥视分析和高位钻孔抽采试验结果均验证了断裂带有效抽采层位数学模型的准确性,研究成果可为高瓦斯和煤与瓦斯突出矿井的高位抽采工程设计提供理论依据。  相似文献   

16.
针对采用常规高位定向长钻孔在工作面初次来压期间瓦斯抽采效果不佳的问题,以中煤华晋集团有限公司王家岭矿12309综放工作面为工程背景,通过物理相似模拟和数值计算分析了初采期综放工作面煤层顶板覆岩结构和裂隙发育规律:初采期的煤层顶板裂隙发育高度低、数量少,随着工作面的推进,顶板裂隙逐步发育,裂隙发育的高度和范围随着推进距离的增加而增大,裂隙最大发育高度约为28m,工作面来压步距约为50m;初采期工作面瓦斯浓度和涌出量较大,沿工作面倾向,瓦斯浓度从20~150架支架逐渐增大,沿工作面走向,由煤壁300mm至后刮板输送机瓦斯浓度逐渐增大,采空区瓦斯涌出量占工作面瓦斯涌出量的50%以上,瓦斯涌出量整体上呈上升趋势,且有明显的阶段性特征。根据现场实际情况和初采期综放工作面瓦斯涌出特征、覆岩结构及裂隙演化规律,对初采期的常规高位定向钻孔的轨迹进行了优化设计,提出了初采期抛物线型高位定向钻孔瓦斯抽采方法。将钻孔的终孔位置设计在煤层里,与采空区直接导通,用于工作面初采期采空区低位瓦斯抽采,解决了初采期常规高位水平长钻孔层位较高的问题。现场应用结果表明:相比于常规高位定向钻孔,采用抛物线型高位定向钻孔可在工作面采空区基本顶初次来压前有效抽采采空区低位瓦斯,瓦斯抽采纯量平均提高了约37%,上隅角和回风流最大瓦斯体积分数均小于0.80%,达到了瓦斯抽采的预期效果。  相似文献   

17.
《工矿自动化》2017,(4):32-36
以贵州省富煤区6个突出煤层为研究对象,采用液氮吸附实验和压汞实验,分析了各煤层煤样的孔隙大小分级,计算了煤样分形维数,并分析了各煤层煤样孔隙分形特征及其与瓦斯吸附量、煤样渗透性的关系。结果表明:6个煤层煤样不同级别的孔隙具有良好的分形特征,能够显示孔隙大小及孔隙分布特征,验证了采用分形维数可以定量分析煤样孔隙特征;微孔分形维数与煤样瓦斯吸附量呈正相关关系,不同煤田煤样瓦斯吸附能力差异较大;小孔分形维数反映了煤样孔隙结构较简单,煤样间孔隙结构复杂程度相似;中孔、大孔、显微裂隙和微裂隙分形维数显示煤样孔隙分布趋势基本一致,存在某些级别孔隙发育很差的情况,需要增透以提高抽采效果。  相似文献   

18.
《工矿自动化》2019,(12):91-96
针对高位钻孔瓦斯抽采存在钻孔数量多、单孔深度不足、钻孔轨迹不可控、瓦斯抽采浓度较低、抽采不连续等问题,为有效防治青龙煤矿21602工作面回采期间上隅角瓦斯浓度超限,利用高位定向钻孔技术对瓦斯进行抽采,介绍了高位定向钻孔设计施工方案,通过现场实践确定了最佳钻孔布置参数。结果表明:高位定向钻孔具有瓦斯抽采浓度高、抽采量大、抽采率高等特点,且高位定向钻孔瓦斯抽采效果随工作面回采距离的增加呈先稳定后下降的趋势;当高位定向钻孔终孔层位距离顶板39m、距离回风巷右帮水平位移为55m时,瓦斯抽采体积分数达30.5%,瓦斯抽采流量达18m3/min,瓦斯抽采纯量达2.374m3/min,瓦斯抽采效果最佳;上隅角瓦斯体积分数由抽采前的最大值0.72%降低至抽采期间的0.2%~0.4%,有效解决了上隅角瓦斯浓度超限问题。  相似文献   

19.
采用高位定向长钻孔抽采瓦斯技术代替高抽巷抽采采动卸压瓦斯不仅能够大幅缩减岩石巷道掘进量,有效缓解矿井采掘接替紧张局面,而且瓦斯治理效果显著,但高位定向长钻孔抽采瓦斯技术在实际应用中经常会出现因采动覆岩“三带”发育高度范围确定失准,定向长钻孔布置层位过高或过低导致应用效果不佳的问题。针对该问题,以河南平顶山天安煤业股份有限公司八矿己15-15050工作面为研究背景,采用经验公式法和数值模拟实验法确定该工作面煤层采动断裂带发育高度,得到了垮落带最大发育高度为13.2 m,断裂带最大发育高度为48 m。利用千米定向钻机在己15-15050工作面施工高位定向长钻孔对所得的断裂带发育高度进行验证,结果表明:距煤层顶板20 m处上覆岩层岩性较为破碎,断裂带高浓度瓦斯区在距顶板23 m以上;当己15-15050工作面推进至105 m时,高位定向长钻孔与采空区断裂带已充分沟通;己15-15050工作面上隅角及回风流瓦斯均保持在0.47%,且高位定向长钻孔单孔最大瓦斯抽采体积分数达13.2%,日抽采纯量保持在3~4 ...  相似文献   

20.
针对青龙煤矿碎软煤层瓦斯抽采钻孔成孔深度浅、轨迹控制精度低及瓦斯抽采效果差等问题,在分析矿井瓦斯地质情况与预抽采方式现状基础上,介绍了采用空气复合定向钻进技术进行顺层定向钻孔施工的原理和关键技术,制定了钻场与钻孔设计、钻进装备和钻具组合选套、钻进技术要求总结的整体试验方案,并在21608轨道巷迎头钻场进行了顺层钻孔空气复合定向钻进试验。试验结果表明,采用空气复合定向钻进技术可实现碎软煤层内顺层定向钻孔施工,完成7个主孔和2个主分支孔,总进尺为3 929m,最大孔深达406m,300m以上钻孔成孔率达88.9%;试验钻孔瓦斯抽采体积分数均超过68%,平均单孔瓦斯抽采纯量超过1m~3/min,最大单孔瓦斯抽采纯量超过2.55m~3/min,抽采纯量是常规钻孔的10倍以上,瓦斯抽采体积分数提高了50%左右,钻孔成孔与瓦斯抽采效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号