首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金属-有机骨架(MOFs)材料是一类由有机配体与金属中心经过自组装而形成的具有可调节孔径的材料。MOFs材料作为新功能材料,近年来成为研究的热点,在制备方法上有了很大的突破。采用微波法制得的MOFs材料与传统无机多孔材料相比,具有超大的比表面积和孔容积、可调的拓扑结构和孔径、良好的热稳定性等优点,因而在化学工业中有着广阔的应用前景,被广泛用于气体储存、催化、吸附等领域。对MOFs材料的微波法制备以及其应用进行了简单的介绍。  相似文献   

2.
微波加热是一种简单、高效、低成本的加热方式,近年来在新材料合成方面得到广泛应用。作为新型多孔材料,金属-有机骨架(MOF)材料在吸附、催化等领域的应用备受关注。由于传统加热法合成MOF材料存在反应时间长等缺点,微波法作为一种新的加热方式被越来越多地用于合成MOF材料。与传统加热法相比,微波法合成MOF具有反应速度快、合成的晶体尺寸小等特点。综述了微波法合成MOF材料的研究进展,介绍了该方法合成的MOF材料在气相吸附、液相吸附方面的应用。  相似文献   

3.
论述了金属-有机骨架材料(MOFs)的合成方法和CO_2吸附分离应用。主要介绍了各合成方法的优缺点、主要操作及发展进程;从单组分CO_2吸附、多组分中CO_2/CH_4、CO_2/N_2选择性吸附、高压下以及亚大气压下CO_2吸附4个方面论述其在CO_2吸附分离上的应用进展,特别讨论了选择性吸附机理及CO_2/H_2O的竞争吸附。  相似文献   

4.
多孔金属-有机骨架(MOFs)材料是近年来发展起来的一种新型功能材料.本文系统综述了MOFs孔结构的调节途径,包括构建分子调节、模板剂调节和反应环境调节控制.通过对有机配体的选择和修饰可调节MOFs的孔结构和孔表面的物理化学性质;而选择具有不同配位构型的金属离子也可以改变MOFs的骨架结构;模板剂通过控制骨架网络结构从而决定MOFs的孔径大小和形状;温度、溶剂等反应条件有时也会在一定程度上影响聚合物的结构.  相似文献   

5.
金属-有机骨架材料MOF-199对甲醛气体吸附行为的研究   总被引:1,自引:0,他引:1  
初步探讨了金属-有机骨架材料MOF-199对甲醛气体的吸附性能.采用分光光度法测定MOF-199对甲醛气体的吸附量,研究了吸附量与吸附温度及吸附时间的关系,并探讨了MOF-199对甲醛的吸附机理,提出了一种测定MOF-199对甲醛吸附量的方法.结果表明,在50℃、6h的吸附条件下,MOF-199对甲醛气体的吸附量最大,达到83.84mg/g;MOF-199对甲醛气体具有较好的吸附效果.  相似文献   

6.
将醋酸银和三苯基磷按1∶2摩尔比例进行反应得到化合物Ag(PPh3)2(CH3COO)]2,采用红外光谱、核磁共振、元素分析和单晶X射线衍射的方法,对其结构进行了表征.晶体结构解析结果显示,配合物属单斜晶系,空间群C2/c,a=44.286 8',b=13.269 6',c=24.997 0',α=90.000°,β=105.573°,γ=90.000°,Z=8,R=0.052 0,wR2=0.132 4.  相似文献   

7.
近年来,金属有机框架材料(MOFs)作为一种新型的有机-无机杂化多孔材料,因其具有比表面积大、孔道和化学性质可调等特点而被广泛应用于吸附、催化、气体储存等领域,但是由于MOFs的不稳定性使其在应用方面受到限制。为了克服这方面的限制,可以通过碳化法使其更加稳定。综述了以MOFs为模板,通过直接和间接碳化法来制备稳定多孔碳材料,并对其在吸附、催化等方面的应用进行了叙述。  相似文献   

8.
李荣  窦元鑫  舒月  陈绪兴  高云 《功能材料》2022,53(5):5009-5025+5058
面对环境污染和能源匮乏,燃料电池作为新型清洁、可再生能源在交通运输、固定与分散电站、移动电源等领域具有广泛的应用前景。然而,目前作为燃料电池核心材料的无机酸或有机质子传导材料存在室温传导率低、湿度依赖性强、构效关系难获得等不足,是制约燃料电池技术发展的一个关键瓶颈。金属-有机框架材料(MOFs)作为一种新型多孔晶态材料,具有结构可设计、骨架可修饰、比表面积大及孔隙可调等优势,在质子传导领域展现出突出的性能和潜在的应用价值。综述了近年来MOFs材料在高性能质子传导方面的研究进展,介绍了质子传导的Grotthuss和Vehicle两种传导机制,系统阐述了有水/无水条件下获得高电导率MOFs质子传导材料的研究方法,详细介绍了高性能、湿度依赖的草酸、羧酸、磷酸和磺酸基MOFs质子传导材料,无水条件下,高性能、高温MOFs质子传导材料通过孔道负载含氮杂环分子获得。最后总结并展望了MOFs质子传导材料未来发展方向,为设计合成性能优异的质子传导MOFs材料提供参考和借鉴。  相似文献   

9.
魏安柯  王磊  王祎 《材料导报》2021,35(13):13052-13057,13066
随着便携式电子设备和电动汽车的发展,目前广泛使用的锂离子电池已不能满足市场的需求,锂硫电池作为一种非常有前途的高能化学电源,因其高理论比容量(1675 mAh?g-1)和高理论能量密度(2600 Wh?kg-1)引起了研究者的广泛关注.然而,在锂硫电池的发展过程中,一些突出的问题制约了其发展,包括硫本征导电性差、充放电前后体积变化大、较差的循环稳定性以及生成的多硫化物易溶解等.相关研究表明,将硫与金属-有机骨架(MOFs)材料复合,构筑成具有特殊微观结构的复合正极材料,可显著改善其导电性、循环稳定性和多硫化物的溶解等问题.本文从锂硫电池的工作原理出发,总结了MOFs作为硫载体的优势特点,综述了近几年MOFs材料在锂硫电池正极方面的研究进展,最后对锂硫电池MOFs基正极材料未来的研究思路与发展趋势进行了分析和展望.  相似文献   

10.
金属-有机框架材料(MOFs)作为一种新型的有机-无机杂化多孔材料,因其具有多种优势被广泛应用于各个方面。光催化降解处理技术因其具有处理效率高、环境友好等优点,在处理难降解的有机废水和废气方面具有巨大优势。综述了MOFs光催化降解废水废气的研究进展。  相似文献   

11.
PVA-PWA-Al2O3无机-有机复合质子交换膜的研究   总被引:3,自引:0,他引:3  
以聚乙烯醇(PVA)、磷钨酸(PWA)和氧化铝(Al2O3)溶胶为原料,制备得到PVA-PWA-Al2O3无机-有机复合质子交换膜,测定了膜的电导率、含水率、溶胀度和甲醇透过系数等性质.测试结果表明,该复合膜具有较高的导电率和较好的阻醇效果,室温下测得电导率最高达到1.162 S/cm,甲醇透过系数在10-7cm2/s左右.复合膜中PWA含量增加,膜的电导率、含水率、溶胀度和甲醇透过系数都有所上升;膜中Al2O3含量增加,膜的电导率、含水率、溶胀度提高,但甲醇渗透系数稍有下降.  相似文献   

12.
近年来,挥发性有机化合物(VOCs)作为一种新兴污染物,引起人们的关注。其中苯系物是一类典型的VOCs。许多苯系物对生物体具有毒性,对人类健康有直接危害。因此在生产生活中,需要对大气中的苯系物浓度进行控制。在各种控制方法中,吸附法作为一种简单易行的方法被广泛研究。金属-有机骨架材料(MOFs)由于其可控的骨架结构、较大的比表面积被广泛用于气体的吸附分离,也被认为是最具有苯系物吸附潜力的材料。主要介绍了MOFs吸附典型苯系物的能力,系统分析了影响MOFs吸附典型苯系物的因素,并深入探究如何通过制备MOFs复合材料来进一步提升其吸附性能。  相似文献   

13.
金属-有机框架(MOFs)是一类由金属离子/团簇和有机配体通过配位形成的具有多孔结构的无机-有机杂化材料。MOFs具有比表面积高、孔径均一、结构可调等优点,受到了人们的广泛关注。然而,MOFs的导电性和稳定性较差,制约了其应用的进一步拓展。以MOFs作为前驱体,通过水热反应或煅烧得到组成、形貌、结构可调的MOFs衍生材料,既能够保持MOFs材料结构多样性和多孔性的特点,又能有效提高其导电性和稳定性,近年来已成为该领域的研究热点。然而,MOFs衍生材料单一的组成和结构,使其能够提供的性能(如电容性能、催化性能)有限,极大地限制了其相关应用的发展。因此,近几年除了研究制备各种不同MOFs衍生材料外,研究者们主要从MOFs衍生材料的组成和结构方面出发,制备出多样化且在各方面应用中(如储能器件、催化)表现出优异性能的材料。MOFs衍生材料作为性能优异的应用型材料,其研究较为成熟的组成和结构分别主要包括多孔碳、金属氧化物、金属硫化物、金属磷化物、金属氢氧化物以及纤维状结构、中空结构、核壳结构等。MOFs衍生材料不仅具有高的比表面积、均一的孔径分布,通常还结合了衍生多孔碳的高导电性及其他衍生材料(金属化合物或掺杂的金属原子及杂原子,如N、P、S等)的优异性能(如电容性能、催化性能),从而发挥出更加优异的性能。其中,MOFs衍生金属化合物材料具备多孔结构,能够提供优异的容量性能及催化性能等,且其性能通常优于通过其他方法制备得到的同种材料。从结构方面出发,近几年,研究者们通过调控前驱体结构亦或是反应条件,制备得到多种不同结构的MOFs衍生材料。一方面,部分制备得到的结构(如核壳结构、中空结构)可以缓解MOFs衍生材料在使用过程中所受到的冲击,从而表现出优异的循环性能。另一方面,通过调控MOFs衍生材料的结构,使其活性位点得到充分的暴露,从而使其性能得到最大化的发挥。本文综述了MOFs衍生材料的研究进展,包括组成特点、结构调控,及其在储能器件、催化领域的应用,最后阐述了MOFs衍生材料研究领域当前面临的挑战以及未来的发展前景。  相似文献   

14.
在室温条件下,以锌粉1g、四氯化碳10mL和纯净水2 mL为比例,使用超声法制备出了Zn5(OH)8Cl2·H2O纳米片。探究了超声环境下Zn5(OH)8Cl2·H2O的生长机理,并对产物的形貌和结构进行了表征。研究了温度对Zn5(OH)8Cl2·H2O转化为ZnO的影响,发现产物在600℃下完全转化为六方结构纤锌矿ZnO,且高温有助于规则ZnO六方棱柱晶体的形成。使用Zn5(OH)8Cl2·H2O对初始浓度为20mg/L的甲基橙溶液进行光催化降解,结果表明,在15min时降解效率达到98.63%,30 min完全降解。  相似文献   

15.
分别在密封和未密封条件下对六水合氯化镁(MgCl2·6H2O)进行600次加速热循环实验,研究其作为太阳能中温蓄热材料的可行性。采用差示扫描量热仪、X射线衍射仪和多路温度测试仪测试不同次数热循环后样品的相变温度、相变潜热、晶体结构和过冷度。结果表明,未密封状态下,200次热循环后,MgCl2·6H2O的相变潜热降低54.2%,并有新相MgCl2·4H2O产生;密封状态下,600次热循环后,MgCl2·6H2O的相变温度和峰值温度的变化分别在±1%和±4%内,相变潜热的变化在-15.2%~+1.5%内(300次热循环后变化异常);同时,MgCl2·6H2O凝固时几乎没有过冷现象,过冷度在0~2.2℃之间。密封状态下,MgCl2·6H2O在太阳能中温蓄热应用中是一种很有发展前景的材料。  相似文献   

16.
以聚乙烯醇(PVA)、磷钨酸(PWA)和氧化铝(Al2O3)溶胶为原料,制备得到PVA—PWA—Al2O3无机-有机复合质子交换膜,测定了膜的电导率、含水率、溶胀度和甲醇透过系数等性质.测试结果表明,该复合膜具有较高的导电率和较好的阻醇效果,室温下测得电导率最高达到1.162S/cm,甲醇透过系数在10^-7cm^2/s左右.复合膜中PWA含量增加,膜的电导率、含水率、溶胀度和甲醇透过系数都有所上升;膜中Al2O3含量增加,膜的电导率、含水率、溶胀度提高,但甲醇渗透系数稍有下降.  相似文献   

17.
研究了NH3·H2 O皂化二 - (2 -乙基己基 )磷酸微乳液体系增溶水过程微观结构的转变 ,测定了增溶水过程电导率和粘度的变化 ,以及在一定溶水量时电导率和温度的关系 ,求得了微乳液颗粒的活化能  相似文献   

18.
通过共沉淀法制备得到不同钴镍锰比例的M(OH)2(M=Ni,Mn,Co)前驱体,经配锂焙烧合成富锂锰基锂离子电池正极材料0.6Li[Li1/3Mn2/3]O2-0.4LiMO2。XRD测试结果表明材料具有α-NaFeO2层状晶体结构,SEM结果显示材料粒径在200~400nm。当Ni∶Mn∶Co=5∶2∶3,得到的富锂锰基氧化物0.6Li[Li1/3Mn2/3]O2-0.4Li(Ni0.5Mn0.2Co0.3)O2材料在2.0~4.6V范围内,表现出优良的循环性能,循环30次后,容量保持率为92.8%。  相似文献   

19.
以CuSO4.5H2O和NH4VO3为原料,采用沉淀法制备了Cu3V2O7(OH)2.2H2O纳米片。利用XRD、FE-SEM、TG对样品的结构和形貌进行了表征,并对其作为锂电池正极材料的电化学行为进行了研究。电化学性能测试表明:Cu3V2O7(OH)2.2H2O纳米片具有较高的放电容量和良好的高温放电性能,是一类性能优良的锂电池正极材料。  相似文献   

20.
张泽儒 《材料导报》2007,21(Z2):262-264
合成了一种新的包含咪唑基团的双端四齿鳌合配体1,4-二[2-(2-吡啶基)苯并咪唑基]丁烷,并用其作为桥联配体与金属离子共同构筑配位聚合物.用Cd2 金属离子和L在DMF/H2O混合溶液中,存在KSCN的条件下,合成一种新型的一维链状配位聚合物{[Cd(Ⅱ)L(NCS)2](DMF)2}n(L=1,4-二[2-(2-吡啶基)苯并咪唑基]丁烷).单晶X-射线分析仪分析表明,该晶体属三斜晶系,P-1空间群,晶胞参数为:a=8.869(1)A,b=11.278(2)A,c=19.328(4)A,α=89.83(3)°,β=89.52(3)°,γ=74.28(3)°,V=1860.9(7)(A)3,Z=2,7250个独立衍射点中,6039个可观测点满足F2≥2σ(F2o),R=0.0543,wR2=0.1442.它是由一维的锯齿形链[Cd(Ⅱ)L(NCS)2]n和游离的DMF分子组成.在链内金属原子与来自于2个具有不同结构的配体L中的4个N原子和2个SCN-阴离子中的2个N原子形成八面体配位.该固态配合物在室温下用389nm的紫外光激发时在453nm处发射出强的荧光.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号