首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
采用一种具有很强的非平稳信号跟踪、预测能力的原子稀疏分解(ASD)法,作为人工神经网络(ANN)的前置分解方法,将风电功率序列分解为原子分量和残差分量,对原子分量进行自预测,残差分量进行ANN预测,再通过追加最新的风电功率实时数据来更新ASD的结果,进而滑动预测下一个时刻的风电功率。以实际风电场数据进行验证,结果证明了该模型可以有效地处理风电功率非平稳性,产生更为稀疏的分解效果,显著地降低了绝对平均误差、均方根误差计算值的统计区间。  相似文献   

2.
为了提高短期负荷预测精度,提出一种基于小波分析、粒子群优化(PSO)算法、最小二乘支持向量机(LSSVM)和长短时记忆网络(LSTM)的预测模型。该方法通过对用电负荷进行小波分解和重构得到与原始数据长度相同的分量,对低频分量建立LSSVM预测模型并利用PSO算法找出最优参数,对高频分量建立LSTM预测模型,将各分量预测结果组合实现最终的负荷预测。实验结果表明,该模型预测精度优于传统LSSVM模型、BP神经网络模型和WD-LSSVM模型,验证了其可行性。  相似文献   

3.
为提高含风电场电网经济调度能力并降低电力系统规划决策的保守性,提出了基于原子稀疏分解-核密度(atom sparse decomposition-kernel density estimation, ASD-KDE)算法的超短期风电出力区间预测模型。该模型应用ASD计算出较为精确的点预测值,并采用粒子群优化正交匹配追踪算法提高原子分解过程的预测实时性。同时针对风电序列不同区域所具有的线性及非平稳特性,构建了衰减线性原子库及Gabor原子库,以期达到自适应分解的效果。再通过对原子分量和残余分量分别进行自预测和BP(back propagation)神经网络预测,获得点预测值。在此基础上,通过对历史风电数据不同区间的划分,构建一维核密度估计模型,逐步滚动获取预测值的置信区间,从而降低了环境变化对预测结果的影响。实际风电场算例验证了所提方法的自适应性、快速性及有效性。  相似文献   

4.
提出将经验模态分解(EMD)和基因表达式程序设计(GEP)算法相结合的EMD&GEP预测法应用于电力系统短期负荷预测中,消除负荷样本中的伪数据,并对负荷样本序列进行经验模态分解得到不同频段的本征模态分量(IMF)和负荷剩余分量.运用基因表达式程序设计算法的灵活表达能力,把分解得到的不同频段的各负荷本征模态分量及负荷剩余分量中所对应的不同日、同一时刻的负荷序列作为样本,进行分时预测.把各负荷本征模态分量和负荷剩余分量中相对应的预测结果进行重构,作为各时刻负荷的最终预测值.EMD克服了小波分析中小波基选取困难的不足,结果表明各负荷本征模态分量能较准确反映负荷特征,而且经比较,EMD&GEP预测法比小波分析和GEP算法相结合的预测方法具有更好的预测效果.  相似文献   

5.
针对负荷本身存在随机性和间歇性,提出一种基于频域分解的负荷预测。首先采用频域分解算法将原始负荷分解为日周期和周周期分量;其次分别采用置信度理论和指数平滑法对日周期分量和周周期分量进行预测;最后将负荷的日周期分量和周周期分量重组,实现短期负荷较为准确的预测。根据某地市的2018年国庆期间的负荷数据进行仿真,证明了预测模型的精确度。  相似文献   

6.
康义  师刘俊  郭刚 《电气技术》2021,22(1):23-28,62
鉴于短期负荷预测精度对电力系统安全、经济和可靠运行的重要性,为提高预测精度,本文提出了基于小波分解(WT)、改进粒子群算法(IPSO)和BP神经网络的组合预测模型.首先运用小波分解对负荷数据预处理,将历史数据分解成cd1、cd2、cd3以及ca3;然后对分解后的小波序列分别进行神经网络建模和预测;最后小波重构负荷序列的最终预报.为提高BP神经网络所需样本的精确性和神经网络的收敛速度及稳定性,采用改进粒子群算法优化网络,形成了"分解-预测-重构"模型.经实例验证,与小波分解BP神经网络方法相比,本文所提方法具有训练学习能力更强、收敛速度更快、预测精度高和适应能力更强的优点.  相似文献   

7.
针对轴承信号稀疏分解方法中因轴承个性化振动行为导致稀疏分解字典与故障信号适配性差,以及因字典参数设置、选取不当而使其在实际应用中稀疏分解效果不佳的问题,提出一种基于动力学小波字典的个性化稀疏诊断方法。该方法基于有限元技术和稀疏分解的思想,根据轴承所处运行工况的不同,建立个性化动力学仿真模型,仿真出振动信号,并从中提取出单个瞬态冲击作为字典原子,将原子进行拓普利兹(Toeplitz)延拓生成动力学小波分析字典,结合正交匹配追踪算法(OMP)对信号进行稀疏分解并重构,提取轴承故障特征频率。动力学模型仿真信号和试验台信号的分析结果表明,相比常用的相关滤波算法(CFA)构造的参数字典、K-SVD自学习字典和快速谱峭度方法,所提出的方法可以更加准确有效地提取故障特征成分,且具有较好的的稳定性和可拓展性。  相似文献   

8.
提出一种基于原子分解和支持向量机(Atomic Decomposition SVM,A-SVM)的电力负荷组合预测方法。首先,采用基于最佳路径组合搜索策略的原子分解法对非平稳负荷信号进行跟踪和分解,得到多个原子分量和残差分量;然后对每个分解后的分量采用支持向量机方法进行数学建模,并利用该模型输出下一时刻的分量预测值,最终将各个分量预测值相叠加,作为下一时刻的负荷预测值。基于浙江省某地区电网的实测负荷数据进行算例仿真,并与另外2种已有方法进行对比,验证了本文所提算法能够将计算耗时减少到30.75 s,均方根误差降低到17.97%,绝对平均误差降低到11.85%。同时,也验证了本文所提方法具有良好的鲁棒性和统计意义,对今后地区电网的负荷预测工作可以起到借鉴作用。  相似文献   

9.
提出将经验模态分解(EMD)和基因表达式程序设计(GEP)算法相结合的EMD&GEP预测法应用于电力系统短期负荷预测中,消除负荷样本中的伪数据,并对负荷样本序列进行经验模态分解得到不同频段的本征模态分量(IMF)和负荷剩余分量。运用基因表达式程序设计算法的灵活表达能力,把分解得到的不同频段的各负荷本征模态分量及负荷剩余分量中所对应的不同日、同一时刻的负荷序列作为样本,进行分时预测。把各负荷本征模态分量和负荷剩余分量中相对应的预测结果进行重构,作为各时刻负荷的最终预测值。EMD克服了小波分析中小波基选取困难的不足,结果表明各负荷本征模态分量能较准确反映负荷特征,而且经比较,EMD&GEP预测法比小波分析和GEP算法相结合的预测方法具有更好的预测效果。  相似文献   

10.
夏季负荷受温度等气象因素影响大,表现出随机性强、波动性大的特点。针对现有短期负荷预测模型在夏季预测精度不高的问题,提出在负荷成分分解的同时,将温度分解为日周期分量和波动分量,以此准确把握短时气象波动对夏季短期负荷预测的影响。在充分分析负荷各分量变化趋势及对整体负荷预测精度影响的基础上,针对各个负荷分量特征分别选择预测方法。在预测气象敏感负荷分量时引入温度波动分量,基于XGBoost智能算法构建预测模型。选用我国中部某市夏季历史负荷建立训练样本,对2017年8月份日96点负荷进行预测,预测结果验证了所提模型和算法的有效性。  相似文献   

11.
基于经验模态分解与特征相关分析的短期负荷预测方法   总被引:2,自引:0,他引:2  
提出了一种基于经验模态分解与特征相关分析的短期负荷预测新方法。该方法从分解负荷序列入手,采用经验模态分解将原始负荷时间序列分解成不同频率的本征模函数(IMF)分量和残差分量,以弱化复杂影响因素环境下原始序列的波动性,获取更具规律性的分量。然后运用最小冗余度最大相关性标准(mRMR)技术分析各IMF分量和日类型、天气、电价等特征信息之间的相关性,获得最佳特征集。最后采用基于智能算法的最小二乘支持向量机(LSSVM)负荷预测模型对各经验模态分量进行预测,并将各分量预测结果叠加得到最终负荷预测值。以某电网实际数据进行算例分析,结果表明所提出的组合模型能够更准确地对外部因素敏感的短期负荷进行预测。  相似文献   

12.
短期电力负荷预测在电网安全运行和制定合理调度计划方面发挥着重要作用。为了提高电力负荷时间序列预测的准确度,提出了一种由完整自适应噪声集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)和基于注意力机制的长短期记忆神经网络(long short-term memory network based on attention mechanism, LSTM-Attention)相结合的短期电力负荷预测模型。完整自适应噪声集成经验模态分解有效地将负荷时间序列分解成多个层次规律平稳的本征模态分量,并通过神经网络模型预测极大值,结合镜像延拓方法抑制边界效应,提高分解精度,同时基于注意力机制的长短期记忆神经网络自适应地提取电力负荷数据输入特征并分配权重进行预测,最后各预测模态分量叠加重构后获得最终预测结果。通过不同实际电力负荷季节数据分别进行实验,并与其他电力负荷预测模型结果分析进行比较,验证了该预测方法在电力负荷预测精度方面具有更好的性能。  相似文献   

13.
为提高用户侧短期负荷预测的精度,提出了一种基于自适应啁啾模态分解(adaptive chirp mode decomposition,ACMD)和麻雀搜索算法(sparrowsearchalgorithm, SSA)优化双向长短时记忆网络(bi-directionallongshort-term memory, BiLSTM)的短期负荷组合预测方法。针对短期电力负荷存在波动性强和非平稳性的问题,采用ACMD将短期负荷时间序列分解为多个相对简单的子分量,使用BiLSTM分别对各子分量进行预测。同时,为克服BiLSTM参数取值不同导致预测结果不稳定的问题,使用SSA优化BiLSTM模型的超参数。最后将各子分量预测结果叠加得到最终预测结果。通过具体算例,分别与单一预测模型和多种组合预测模型进行比较,实验结果表明该方法具有更高的预测精度。  相似文献   

14.
提升负荷预测的准确性对于指导电力系统的生产计划、经济调度以及稳定运行至关重要。提出一种基于变分模态分解(Variational Mode Decomposition, VMD)和长短期记忆(Long Short Term Memory, LSTM)神经网络的短期负荷预测模型。利用VMD算法将负荷序列分解成不同的本征模态函数(Intrinsic Mode Functions, IMF),每个IMF结合LSTM进行预测,将各部分预测结果叠加得到VMD-LSTM模型的预测结果。分析实验结果,相比单一LSTM和经验模态分解(Empirical Mode Decomposition, EMD)组合LSTM预测方法,该方法能有效的提升负荷预测的准确性。  相似文献   

15.
多层分区空间负荷预测结果综合调整的区间方法   总被引:8,自引:4,他引:4  
提出了一种新的能计及不确定性因素的空间负荷预测结果综合调整的区间方法.首先建立了多层分区的空间负荷预测区间模型,将预测单元分为总量层、数据收集层和仿真层,既能结合趋势法和仿真法的优点,又能在保证足够土地划分解析度和预测精度的前提下有效控制数据收集的工作量.然后提出了基于该模型的空间负荷预测综合调整区间方法,这是一种在信息不完备条件下的负荷分布估计方法,解决了实际中空间负荷预测结果综合调整的难题.最后通过实例说明了该方法的实用性和有效性.  相似文献   

16.
基于小波分解的电力系统短期负荷预测方法研究   总被引:1,自引:0,他引:1  
为提高预测精度,提出一种基于负荷分解的电力系统短期负荷预测方法。即将负荷分成周期性不同的几部分,对分解后的各负荷序列通过相匹配的神经网络方法进行预测,并考虑温度因素的影响,采用线性回归模型对神经网络预测结果修正得到最终预测结果,预测结果与实际数据对比得出,预测方法更具准确性。  相似文献   

17.
随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。  相似文献   

18.
基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测   总被引:7,自引:1,他引:6  
超短期风电功率爬坡事件越来越影响风电机组在电网中的运行。当前国内对爬坡事件的定义并不明确,缺少相应的预测方法。阐述了风电功率爬坡事件的物理含义,提出了一种基于原子稀疏分解和反向传播神经网络(BPNN)的组合预测方法,分别建立了原子分量自预测模型、残差分量预测模型和组合预测模型。以实际风电场数据进行验证,对不同预测方法和不同时间空间实测数据进行了较全面的分析,结果表明该方法可以提高预测精度,并能降低绝对平均误差和均方根误差计算值的统计区间。  相似文献   

19.
精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。本文利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,提出复合变量选取算法分析筛选影响负荷波动的关键因素,有效去除预测干扰信息并进一步简化预测模型的复杂度,通过兼顾数据短期依赖和长期依赖的长短时记忆神经网络对各子序列进行预测,并将各子序列预测结果进行叠加实现最终的短期负荷预测,据此建立基于变分模态分解和复合变量选取的短期负荷预测方法。选取2019整年长沙市实际数据验证结果表明,本文提出算法在复杂外部影响因素下,能准确筛选负荷预测的关键影响因素,相比传统预测模型,提出模型结构更简单、预测精度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号