首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
以LiOH·H_2O、NH_4VO_3、H_3PO_4为原料,三甘醇为还原剂,在水相中制备Li_3V_2(PO_4)_3前驱体,在惰性气氛中850℃焙烧8 h得到锂电池正极材料Li_3V_2(PO_4)_3。XRD、SEM和恒电流充放电测试表明,所得的样品为纯相单斜Li_3V_2(PO_4)_3,结晶为10~20 mm的团粒结构;在3.0~4.3 V(vs.Li/Li~+)电压范围内以0.1 C、1 C充放电,首次放电比容量分别为120.0和114.9 mAh/g,1 C充放电35次循环后放电比容量为112.1 mAh/g,容量保持率为98%,具有良好的倍率性能和循环性能。  相似文献   

2.
以Fe(NO_3)_3·9H_2O、LiNO_3、NH_4H_2PO_4和石墨烯为原料,用溶胶-凝胶法制备磷酸铁锂(LiFePO_4)材料和LiFePO_4/石墨烯复合材料。用XRD、拉曼光谱、SEM、透射电镜(TEM)及充放电测试,研究样品的晶体结构、形貌和电化学性能。样品具有典型的橄榄石结构,复合的石墨烯能减小LiFePO4的颗粒尺寸,石墨烯与LiFePO_4能很好地融合在一起。LiFePO_4/石墨烯复合材料的电化学性能较好:在2.0~3.8V循环,0.2C和1.0C首次放电比容量分别为164mAh/g和153mAh/g,较LiFePO_4提高了7mAh/g。1.0C第100次循环的放电比容量为152mAh/g,容量保持率为99%。  相似文献   

3.
以Li_2CO_3、Ti(OC_4H_9)_4和NH_4H_2PO_4为原料,柠檬酸作为螯合剂,采用溶胶-凝胶法制备LiTi_2(PO_4)_3负极材料,再分别用葡萄糖、蔗糖、聚乙烯醇和淀粉作为碳源对LiTi2(PO_4)3进行碳包覆处理。通过X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)对材料的晶体结构和形貌进行表征;并采用恒电流充放电(GCD)、循环伏安法(CV)和电化学交流阻抗谱(EIS)研究了材料的电化学性能。结果表明,碳包覆可以提高LiTi_2(PO_4)_3材料的电化学性能,但不会影响LiTi_2(PO_4)_3的晶体结构。其中,以葡萄糖作为碳源包覆的LiTi_2(PO_4)_3电化学性能最佳,0.1 C倍率下首次放电比容量为138.5 mAh/g。在0.2 C、0.5 C、1 C、2 C、5 C、10 C和20 C放电倍率下,放电比容量分别为112.0、109.9、108.6、103.2、94.0、80.6和49.8mAh/g。此外,在0.1 C倍率下经过50次循环后放电比容量仍能保持79.4%。  相似文献   

4.
以柠檬酸为络合剂,采用溶胶凝胶法制备钠离子电池正极材料Na_3V_2(PO_4)_3。借助XRD、SEM等测试手段对样品的结构和形貌进行了深入分析,借助电化学测试手段对材料电化学性能进行了测试。结果表明:材料在750℃下保温8 h时,材料晶格发育良好。结晶度高的正极材料,在2.5~4.0 V电压下以0.2 C电流充放电,首次放电比容量达到107mAh/g,首次不可逆容量占比为1.29%,经过150次循环后,比容量保持在97.1 mAh/g,容量衰减为90.75%。  相似文献   

5.
陈龙  李海君  陈敏  栗欢欢 《电池》2018,(2):90-94
采用柠檬酸溶胶-凝胶法合成锌离子(Zn~(2+))掺杂的磷酸钴锂(LiCoPO_4)正极材料LiZn_xCo_(1-x)PO_4。XRD和SEM分析表明:少量Zn~(2+)掺杂不会明显改变晶格结构,且粒径变小、粒度更均一。充放电(3.0~5.1V)及高低温性能测试表明:Zn2+掺杂后,材料的比容量提高、循环性能改善,并有较好的高倍率及高低温放电性能。Zn~(2+)掺杂量为0.01时,首次0.1 C放电比容量为150.3 mAh/g,比纯相增加15%。1.0C、5.0C放电比容量分别为118.9mAh/g和67.1mAh/g。在40℃、0℃下的0.1C放电比容量分别为160.0mAh/g和37.8mAh/g。循环伏安及交流阻抗测试表明:少量Zn~(2+)掺杂使电荷转移阻抗减小,电化学可逆性增强。LiZn_(0.01)Co_(0.99)PO_4与Li_4Ti_5O_(12)组成的3.3 V全电池以0.1C放电,比容量可达135.3mAh/g。  相似文献   

6.
张新  刘素琴  黄可龙  房雪松  程凤 《电源技术》2012,36(5):636-638,698
以Li2CO3、NH4H2PO4、V2O5、草酸及淀粉为原料,采用高温固相法合成了具有多孔结构的Li3V2(PO4)3/C复合材料,研究了合成温度对材料结构和电化学性能的影响。采用X射线衍射(XRD)、扫描电镜(SEM)对不同温度下合成的Li3V2(PO4)3/C结构和形貌进行表征,并用恒电流充放电及交流阻抗检测方法研究材料的电化学性能。结果表明:800℃合成材料具有最佳的多孔结构及电化学性能。0.1 C初始放电比容量为130 mAh/g,经20次循环后,放电比容量仍然保留124.9 mAh/g,为初始放电比容量的96.1%。2 C下循环50次材料仍有91.5 mAh/g的放电比容量,比容量损失率仅为7%。对800℃下制备的多孔Li3V2(PO4)3/C复合材料具有最佳电化学性能的原因进行了初步研究。  相似文献   

7.
以LiOH·H_2O、NH_4VO_3、H_3PO_4为原料,四甘醇为还原剂,在水相中制备Li_3V_2(PO4)_3前驱体,在惰性气氛中850℃焙烧8 h得到锂电池正极材料Li_3V_2(PO_4)_3。X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和恒电流充放电测试表明,所得样品为单斜Li_3V2(PO4)_3,厚度约为0.5μm的片状结晶;在3.0~4.3 V(vs.Li/Li+)电压范围内以0.1 C、1 C充放电,首次放电比容量分别为123.1和113.5 m Ah/g,1 C充放电40次循环后放电比容量为111.1 m Ah/g,容量保持率为98%,具有良好的倍率性能和循环性能。  相似文献   

8.
以磷酸二氢锂为锂源和磷酸根源、五氧化二钒为钒源,硬脂酸为还原剂和表面活性剂,采用球磨加碳热还原法制备锂离子电池正极材料Li_3V_2(PO_4)_3/C复合材料。采用X射线衍射光谱法(XRD)对样品进行了物相分析,用扫描电子显微镜法(SEM)对样品形貌和粒径进行了表征,用恒流充放电蓝电测试仪对材料的电化学性能进行了测试。结果表明:烧结温度700℃时产品循环性能和倍率性能最佳。在3.0~4.3 V电压范围内,0.1 C、0.5 C下,首次放电比容量分别为115.2、108.7 mAh/g,循环50次、17次后容量保持率分别为96.7%、101.4%,呈现了良好的循环性能。  相似文献   

9.
以葡萄糖、NH4H2PO4、V2O5和LiF为原料,分别通过液相法和固相法合成了锂离子电池正极材料LiVPO4F/C复合材料,并通过X-射线衍射(XRD)、扫描电镜(SEM)及电化学测试技术对复合材料的结构、形貌及电化学性能进行了表征。结果表明,两种方法所合成复合材料均由三斜结构的LiVPO4F与碳组成;液相法所合成的材料首次放电比容量分别为133.7(0.2 C)、124.9 mAh/g(0.5 C)和118.7 mAh/g(1 C),明显高于相同测试条件下固相法所合成材料的首次放电比容量[131.2(0.2 C)、121.4 mAh/g(0.5 C)和104.9 mAh/g(1 C)],并且液相法合成的复合材料循环性能优于固相法合成的复合材料;液相法合成的LiVPO4F/C复合材料具有良好的循环性能和倍率性能,其2 C和5 C的放电比容量分别高达114 mAh/g和98 mAh/g,循环50次后,容量损失率均小于1%。  相似文献   

10.
李海  王世星  李堂鹏  赵雷 《电源技术》2021,45(9):1115-1118
将氧化石墨烯与SnCl2·2 H2O水溶液混合,搅拌过程中滴入氨水,经空气中干燥,最后在氩气气氛中退火制得SnO2/石墨烯纳米复合材料.X射线衍射(XRD)表征确定了SnO2纳米颗粒的晶格结构.场发射扫描电镜(FESEM)和透射电镜(TEM)表明:SnO2纳米颗粒均匀分布在石墨烯片层中,且两者结合紧密.作为锂离子电池负极材料,所制备的纳米复合材料的首次可逆比容量为970 mAh/g,以50 mA/g的电流密度循环50次后比容量为639 mAh/g,表现出优越的循环性能.同时,该复合材料具有良好的倍率性能.  相似文献   

11.
以H3PO4、Fe2O3、LiOH·H2O和葡萄糖为原料,利用H2还原制备了LiFePO4/C复合材料,并进行了XRD、SEM、碳含量和振实密度分析,以及电化学性能测试。制备的LiFePO4/C复合材料的含碳量为1.9%,振实密度为1.4g/cm3;0.1C、1.0C首次放电比容量分别为148.4mAh/g和128.4mAh/g,1.0C循环60次的容量保持率为98.8%。通过机理研究,发现了反应的中间产物Li3PO4、Li3Fe2(PO4)3、Fe2Fe(P2O7)2和LiFeP2O7。  相似文献   

12.
用溶剂热法制备绒球状钴酸锌(ZnCo_2O_4)/碳纳米管(CNT)复合材料。用XRD、SEM技术分析物相和形貌,用恒流充放电及循环伏安法测试电化学性能。添加CNT使ZnCo_2O_4呈多孔结构,可提高作为锂离子电池负极材料的电化学性能。以500 mA/g的电流在0.01~3.00 V循环,ZnCo_2O_4/CNT的首次充、放电比容量分别为1 002.3 mAh/g、1 284.9 mAh/g,首次库仑效率达78.00%;第50次循环的充、放电比容量分别为1 197.2 mAh/g、1 209.8 mAh/g,库仑效率达98.96%。  相似文献   

13.
胡德鹏  鲁道荣 《电池》2012,42(3):138-141
用XRD、透射电镜(TME)和电化学性能测试,研究了Co2+掺杂对正极材料磷酸钒锂[Li3V2(PO4)3]的影响。掺杂适量的Co2+不会改变Li3V2(PO4)3的单斜晶系结构,可稳定材料结构,改善高倍率充放电性能。在室温下、3.0~4.3 V充放电,Li3(Co0.03V0.97)2(PO4)3以0.1C放电的首次放电比容量为116.8 mAh/g,电流从0.1C增加到1.0C循环80次后,容量衰减率为16.5%;Li3V2(PO4)3的首次放电比容量为128.8mAh/g,80次循环后,容量衰减率为34.8%。循环伏安和交流阻抗测试表明:Li3(Co0.03V0.97)2(PO4)3的可逆性优于Li3V2(PO4)3。  相似文献   

14.
Li3V2(PO4)3/C复合正极材料的制备与性能   总被引:2,自引:0,他引:2  
以CH3COOLi、V2O5、NH4H2PO4和碳凝胶为原料,采用溶胶-凝胶法合成了锂离子蓄电池Li3V2(PO4)3/C复合正极材料.对其前驱体和产品采用热重-差热分析(TG-DTA)、X射线衍射(XRD)以及元素分析分别进行了表征.考察了掺杂碳含量对材料充放电性能及其高倍率循环性能的影响.样品C的首次放电比容量达到128.4 mAh/g.样品B和C以0.2 C充放120次后容量几乎没有衰竭;继续以1 C充放电120次,其比容量仍基本恒定,比单一Li3V2(PO4)3材料具有更优良倍率性能和循环性能.交流阻抗测试表明碳掺杂可以形成碳包覆层,材料的电导率大幅提高,从而提高了材料的电化学性能.  相似文献   

15.
胡勤琴  周震涛 《电池》2007,37(1):38-40
采用高温固相法,制备了锂离子电池用的纯LiMno0.6Fe0.4PO4和LiMn0.6Fe0.4PO4/C复合正极材料.利用酸溶解法、XRD、扫描电镜及充放电测试等,对样品的碳含量、晶体结构、形貌以及电性能等进行了研究.所得LiMn0.6Fe0.4PO4和LiMn0.6Fe0.4P04/C均为纯橄榄石型晶体结构,其中以蔗糖为碳添加剂的LiMn0.6Fe0.4PO4/C复合材料具有良好的循环性能和高倍率性能:以0.1C充放电,首次放电比容量为122.3 mAh/g,循环15次之后,容量保持率为99.3%;以0.5 C和1.5 C充放电,首次放电比容量分别为121.4 mAh/g和110.2 mAh/g.  相似文献   

16.
用一种廉价的Fe2O3为铁源,使用柠檬酸作为还原剂,采用一种改进的碳热还原法制备出了LiFePO4/C、LiFe0.95Ti0.08PO4/C、LiFe0.9Ti0.1PO4/C和LiFe0.85Ti0.15PO4/C四种掺杂Ti的锂离子电池正极材料,利用X射线衍射光谱法(XRD)、扫描电子显微镜(SEM)、恒电流充放...  相似文献   

17.
报道了以超低温膨胀石墨作为锂离子电池负极材料的研究。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)以及氮气吸脱附测试(BET)对其物相、表面形貌及结构进行表征;利用恒电流充/放电对其电化学性能进行了测试。结果表明:超低温膨胀石墨呈现出蜂窝状多孔结构,比表面积为54 m~2/g。该材料表现出较好的脱/嵌锂容量和良好的循环性能,在100 m A/g的电流密度下,首次可逆比容量达到410 m Ah/g;循环220次后,比容量仍能维持在400 m Ah/g,容量保持率高于95%,是一种具有很好应用前景的储锂负极材料。  相似文献   

18.
胡传跃  郭军  彭秧锡 《电源技术》2012,36(7):951-952,965
以液相沉淀法制备的Li3PO4和NH4H2PO4均匀混合物为原料,合成了Fe2+空位的橄榄型锂离子电池Li1.08Fe-(PO4)1.08/C正极材料。X射线衍射光谱法(XRD)和扫描电子显微镜法(SEM)分析结果表明,采用Fe2+空位与碳包覆方法获得了较小晶胞体积和细小球形颗粒的Li1.08Fe(PO4)1.08/C粉末。0.2 C倍率电化学性能测试结果表明,纯Li1.08Fe-(PO4)1.08的首次放电比容量达142.4 mAh/g,而包覆9.23%C的Li1.08Fe(PO4)1.08的首次放电比容量达153.3 mAh/g、0.5 C倍率循环100次后的放电比容量为144.5 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号