首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
K均值算法简单快速,但其结果容易受初始聚类中心影响,并且容易陷入局部极值。该文结合粒子群优化算法和免疫系统中的免疫调节机制与免疫记忆功能对K均值算法进行改进,提出一种基于免疫粒子群优化的聚类算法。实验结果证明,该算法解决了K均值算法存在的对初值敏感的缺点,聚类结果稳定,而且比基于粒子群优化的聚类算法具有更好的聚类效果。  相似文献   

2.
3.
基于混沌的聚类粒子群优化算法   总被引:1,自引:0,他引:1  
针对函数优化问题,提出了一种基于混沌的聚类粒子群优化算法。该算法利用混沌序列产生粒子的位置和速度,并与粒子群优化算法产生的粒子位置进行比较,选择好的粒子位置。同时通过谱系聚类方法进行聚类,并且给出新的速度更新公式。最后将算法应用到5个典型的函数优化问题中,并与其它改进的粒子群算法进行比较分析。数值结果表明,该算法提高了全局搜索能力、收敛速度和解的精度。  相似文献   

4.
为了改善量子行为粒子群优化算法的收敛性能,避免粒子早熟问题,提出了一种基于完全学习策略的量子行为粒子群优化算法。由此设计了一种新的数据聚类算法,新的聚类算法通过特殊的粒子编码方式在聚类过程中能够自动确定最佳的聚类数目。在五个测试数据集上与其他两种动态聚类算法进行聚类实验比较,实验结果表明,基于完全学习策略的量子行为粒子群优化动态聚类算法能够获得较好的聚类结果,有着良好的应用前景。  相似文献   

5.
基于粒子群优化算法的数据流聚类算法   总被引:1,自引:0,他引:1  
肖裕权  周肆清 《微机发展》2011,(10):43-46,50
针对当前基于滑动窗口的聚类算法中对原始数据信息的损失问题和提高聚类质量和准确性,在现有基于滑动窗口模型数据流聚类算法的基础上,提出了一种基于群体协作的粒子群优化算法(PSO)的新数据流聚类算法。这种优化的新数据流聚类算法利用改进的时间聚类特征指数直方图作为数据流的概要结构以及应用PSO在聚类过程中对聚类质量的局部迭代优化。实验结果表明,此方法有效减少了内存的开销,解决了对原始数据信息损失的问题。与传统的数据流聚类算法相比,基于粒子群优化算法的数据流聚类算法在聚类质量和准确性上明显优于传统的数据流聚类算法。  相似文献   

6.
基于特征分析的粒子群优化聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高粒子群优化聚类算法的性能,结合特征分析相关方法,提出一种新的串联聚类算法KPCA-PSO,阐述算法的基本原理和实施方案。在特征分析过程中,以一种简单有效的特征值选择方法避免手动选择特征值的繁琐过程。以人工数据和实际数据测试算法性能,实验结果表明该方法具有较好的聚类效果。  相似文献   

7.
基于粒子群优化的模糊C-均值聚类改进算法   总被引:3,自引:3,他引:3  
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果.  相似文献   

8.
针对k-means算法的聚类结果高度依赖初始聚类中心选取的问题,提出一种基于改进粒子群优化的文本聚类算法。分析粒子群算法和k-means算法的特点,针对粒子群算法搜索精度不高、易陷入局部最优且早熟收敛的缺点,设计自调节惯性权重机制及云变异算子以改进粒子群算法。自调节惯性权重机制根据种群进化程度,动态地调节惯性权重,云变异算子基于云模型的随机性和稳定性,采用全局最优值实现粒子的变异。该算法结合了粒子群算法较强的全局搜索能力与k-means算法较强的局部搜索能力。每个粒子是一组聚类中心,类内离散度之和的倒数是适应度函数。实验结果表明,该算法是一种精确而又稳定的文本聚类算法。  相似文献   

9.
目(2055)基于聚类的多子群粒子群优化算法*   总被引:6,自引:0,他引:6  
在粒子群优化算法基础上,提出了基于聚类的多子群粒子群优化算法。该算法在每次迭代过程中首先通过聚类方法把粒子群体分成若干个子群体,然后粒子群中的粒子根据其个体极值和“子群”中的最优粒子更新自己的速度和位置值。这种处理增加了粒子之间的信息交换,利用了更多粒子在迭代过程中的信息,使算法的收敛性能更好。仿真结果表明,该算法的性能优于粒子群优化算法。  相似文献   

10.
针对粒子群优化(PSO)算法优化高维问题时,易陷入局部最优,提出一种基于K-均值聚类的协同进化粒子群优化(KMS-CCPSO)算法。该算法通过引入K-均值算法扩大种群的局部搜索范围,采用柯西分布和高斯分布相结合的方法更新粒子的位置。实验结果表明,该算法具有较好的优化性能,其优势在处理高维问题上更为明显。  相似文献   

11.
基于粒子群优化的项聚类推荐算法   总被引:3,自引:2,他引:1       下载免费PDF全文
针对传统推荐算法的数据稀疏性问题和推荐准确性问题,提出基于粒子群优化的项聚类推荐算法。采用粒子群优化算法产生聚类中心,在此基础上搜索目标项目的最近邻居,并产生推荐,从而提高了传统聚类算法的推荐准确性及响应速度。实验表明改进的项聚类协同过滤算法能有效提高推荐精度。  相似文献   

12.
为解决粒子群优化算法易于陷入局部最优问题,提出2种方法并行改进惯性权重。对比平均值差的粒子,用所设计的动态P混沌映射公式调整惯性权重,在复杂多变的环境中逐步摆脱局部最优,动态寻找全局最优值。对好于或等于整体适应度平均值的粒子,用所提出的动态非线性方程调整惯性权重,在保存有利条件的基础上逐步向全局最优处收敛。2种方法前后相辅相成、动态协作。实验结果证实,该算法在不同情况下都超越了同类改进算法。  相似文献   

13.
基于多样性反馈的粒子群优化算法   总被引:7,自引:4,他引:3       下载免费PDF全文
焦巍  刘光斌 《计算机工程》2009,35(22):202-204
利用粒子群多样性的反馈信息,给出带有粒子群多样性测度反馈控制的新惯性权值动态自适应调节方法,有效地维持进化初期的种群多样性,降低粒子群优化算法在进化初期发生早熟的风险,提高最优化解的精度,减小种群规模对优化精度的影响。几个典型函数的仿真结果以及与2种典型的惯性权值调节粒子群算法的比较结果表明了算法的有效性。  相似文献   

14.
基于粒子群优化的高斯核函数聚类算法   总被引:1,自引:1,他引:1  
于进  钱锋 《计算机工程》2010,36(14):22-23
针对视频帧数据在时间轴上的高斯分布特征,提出基于样本和高斯核相似性度量的聚类算法,采用度量方法考虑概率分布密度因素,同时利用改进的粒子群优化算法加速聚类过程。实验结果表明,与基于C均值聚类算法相比,该算法具有较强的全局搜索能力和聚类精度,在视频数据聚类分析中具有更高的效率和更佳的聚类效果。  相似文献   

15.
一种新的粒子群优化算法   总被引:1,自引:2,他引:1  
代军  李国  徐晨  陶艾 《计算机工程》2010,36(9):192-194
针对传统粒子群优化算法容易早熟、收敛精度低等缺点,提出一种改进方案,使用随机惯性权重,在每一次迭代中,对可能陷入局部极值的粒子进行有效的随机初始化。通过对7个经典测试函数的数值仿真实验证明,该新算法能提高粒子群优化算法的寻优能力,并在维数较高时也能获得较好的优化效果。  相似文献   

16.
保持粒子活性的改进粒子群优化算法   总被引:6,自引:3,他引:6       下载免费PDF全文
针对基本粒子群优化算法(particle swarm optimization, 简称PSO)存在的早熟收敛问题,提出了一种保持粒子活性的改进粒子群优化(IPSO)算法。当粒子失活时,对粒子进行变异或扰动操作,重新激活粒子,使粒子能够有效地进行全局和局部搜索。通过对4种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。  相似文献   

17.
动态粒子群优化算法   总被引:5,自引:1,他引:5       下载免费PDF全文
针对普通粒子群优化算法难以在动态环境下有效逼近最优位置的问题,提出一种动态粒子群优化算法。设置敏感粒子和响应阈值,当敏感粒子的适应度值变化超过响应阈值时,按一定比例重新初始化种群和粒子速度。设计双峰DF1动态模型,用于验证该算法的性能,仿真实验结果表明其动态极值跟踪能力较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号