共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a solid presence on global hydrodynamic parameters and heat transfer in an external loop airlift reactor has been experimentally investigated. Results obtained in both two- and three-phase flow are presented in this study. Two different external loop airlift reactor sizes have been used and local hydrodynamic characteristics including local gas hold-up and bubble velocity have been obtained in two-phase flow. Optical and ultrasound probes have been used to obtain this information, respectively. It was found that an increase of solid hold-up leads to a decrease of liquid velocity and heat transfer coefficient. Measured in a two- and three-phase reactor using a horizontal-heating probe, a correlation of the average gas hold-up and heat transfer coefficient is proposed. Correlation parameters are identified in homogeneous and heterogeneous flow regimes, which have been derived from the gas slip velocity concept. The experimental liquid velocity and gas hold-up in the riser have been represented in a satisfactory way by a hydrodynamic model, either in the absence or in the presence of solid particles. 相似文献
2.
从强化传质与节能方面概述了近年来国内外在气升式反应器结构参数优化、操作参数的优化及溶液性质等方面的研究工作 ,提出了今后的研究方向 相似文献
3.
超声波气升式反应器内声压的测定 总被引:2,自引:0,他引:2
测定了在空气—水和空气—羧甲基纤维素水溶液体系中 (羧甲基纤维素含量 :2g/L)超声波气升式反应器声压随轴向位置、表观气速、黏度和超声电功率的变化。测定结果表明 ,小气速下声压在气升式反应器内的轴向分布与离开超声探头的距离有关 ,距离越远 ,声压越小 ;与气速的大小有关 ,气速越大 ,声压越小 ;与液体的黏度有关 ,黏度越大 ,声压越小 ;超声电功率越大 ,声压越大。 相似文献
4.
The hydrodynamics of an annulus airlift reactor (AALR) was studied and compared with that of a slurry bubble column reactor (SBCR) with silica sands of 75-125 μm in size as solids, city tapping water as liquid phase, and air as gas phase in the present investigation. The effects of superficial gas velocity and solids concentration on gas holdup and solids distributions were investigated. The results showed that the local average gas holdup decreased along the column height, and the average gas holdup decreased with the increasing solids concentration, but this tendency became less at higher solids concentrations. It was found that the effect of superficial gas velocity on axial solids distribution was negligible over the gas velocity range investigated, as long as the solids in the column could be suspended. Increasing solids concentration led to flatter axial solids holdup profiles. The axial distributions of solids concentration and gas holdup in the AALR were much more uniform than those in the SBCR, and slurry circulation in the AALR damped the effects of increasing solids concentration on the hydrodynamics. These advantages of an AALR over a SBCR are especially important for some catalytic reaction processes in three-phase systems such as Fischer-Tropsch synthesis and methanol synthesis. 相似文献
5.
Airlift reactors are pneumatically agitated reactors that have been widely used in industries, particularly in bioprocesses. Extensive studies about the flow dynamics in airlift column reactors exist; however, most of these studies have focused on global hydrodynamic parameters using conventional techniques. The local flow characteristics, such as the macro-mixing and the turbulence intensity, are crucial for reliable design and scale-up, and they remain unclear. This work focuses on studying the macro-mixing in a draft-tube airlift bioreactor utilizing an advanced flow dynamic measurement technique, computer automated radioactive particle tracking (CARPT). True residence time distribution analyses for the overall column as well as individual regions, i.e., the riser, the downcomer, the top, and the bottom regions, are conducted for the first time based on CARPT measured particle trajectories. The effects of the superficial gas velocity and the top/bottom clearances on the macro-mixing are also discussed. The results suggest that although the flow structures in the overall draft-tube column reactor, as well as in the riser and in the downcomer, are close to plug flows, bypassing and stagnancy exist in the top and the bottom regions. 相似文献
6.
新开发的有机玻璃制成的旋流气升式环流反应器高为2m、内径75mm,内部的导流筒(材料为PVC)高1.5m、内径30mm、壁厚1mm且装有10组扇形翅片。以空气-水为两相物系、空气-水-K树脂为三相物系,常温常压下,利用直接取样法和压差法测量了上升区局部的气含率、固含率,研究了不同底部间隙、不同固体装填体积分数下表观气速和轴向高度对上升区气含率、固含率的影响规律。结果表明:在均匀鼓泡流时上升区气含率随着表观气速的增大而增大,随着固体装载量的增加而下降;在非均匀鼓泡流时,三相物系的气含率高于两相物系的气含率。随着上升区轴向高度的增大,上升区局部气含率变化不大;底部间隙越大,气含率越小。在轴向高度较低时上升区固含率随着轴向高度的增大而减小,轴向高度较高时上升区固含率基本保持不变。 相似文献
7.
Malin Liu 《Chemical engineering science》2007,62(24):7098-7106
The hydrodynamics of a slurry airlift reactor at high solid concentrations were experimentally studied. The influences of the average solid concentration, superficial gas velocity and particle size on the radial and axial profiles of the solid holdup, average gas holdup and liquid circulation velocity were investigated. The local solid holdup was measured with an electrical conductivity probe. At low solid concentrations or high superficial gas velocities, the radial profile of the solid holdup was uniform. At high solid concentrations, the radial profile of the solid holdup was nonuniform, with higher values near the wall. This radial nonuniformity increased with decreased superficial gas velocity or increased average solid concentration. The axial profile of the cross-sectional average solid holdup was uniform at all conditions in this work, even at high solid concentrations. The average gas holdup and liquid circulation velocity increased with the superficial gas velocity but decreased with the average solid concentration. A mathematical model based on the balance of the transverse lift force and turbulent dispersion force was proposed to predict the radial profile of the solid holdup. Reasonable predictions were obtained from this model with an adjustable model parameter. 相似文献
8.
In the present investigation a novel multi-stage external loop airlift reactor with hydro-dynamically induced continuous bubble generation, breakup and regeneration has been proposed. The system has been designed to operate with relatively large sized bubbles, so that interfacial circulation can be induced in the liquid-bubble interfaces and faster transfer of components can take place by turbulent diffusion through the interface of the bubbles and also due to the physical rupture and reformation of the bubbles. The system was also designed to operate in three stages operating in series so that in each stage completely deaerated liquid could be brought in contact with freshly generated bubbles. Detailed studies on the gas holdup and liquid circulation velocity have been carried out with respect to various values of superficial gas as well as liquid velocities. The gas holdup of the proposed multi-stage system is 45% higher than the single stage system, which results in better mass transfer characteristics. Empirical correlations describing the performance of the proposed reactor have been presented in this paper. 相似文献
9.
M. Bla
ej M. Ki
a J. Marko 《Chemical Engineering and Processing: Process Intensification》2004,43(12):3580-1527
The overall circulation velocity, the overall riser and downcomer gas hold-ups and the effect of reactor scale on a two-phase circulation regimes were studied in this work in three airlift reactors of different scale. The measurements were carried out in airlift reactor with internal loops (IALRs) with a working volume of 10.5, 32 and 200 l at the range of temperatures 18–21 °C, under atmospheric pressure. Air and water were used as gas and liquid media. The three reactors were of similar geometry, the ratio between riser and downcomer cross-sectional areas, the aspect ratio of the column and the shape of the column bottom were taken as similarity criteria. In order to determine the linear circulation velocities, the magnetic tracer method was used. The riser and the downcomer were studied separately. Based on gas hold-up in both the riser and the downcomer, two regimes (homogeneous bubble (HMG) and heterogeneous churn-turbulent (HTG)) of the two-phase flow were observed. These were defined by Daniels [Chem. Eng. 70 (1995)] and described using the correlation proposed by Chisti [Airlift Bioreactors, Elsevier, London, 1989]. The average of the liquid circulation velocities increased with increasing reactor scale for the same superficial gas velocity. The overall circulation velocity was modelled on the basis of the momentum balance proposed in paper [Chem. Eng. Sci. 52 (1997) 25]. The parameters of both the correlation and the model tend to be constant for larger reactor scales. The value of the driving force (R−D) was found to be important only for lower values of gas flow rate, because at higher values, the circulation velocity seemed to be governed only by friction in the reactor vessel. 相似文献
10.
Dan Li Kai Guo Jingnan Li Yiping Huang Junchao Zhou Hui Liu Chunjiang Liu 《中国化学工程学报》2018,26(6):1359-1369
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading. 相似文献
11.
CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor 总被引:1,自引:0,他引:1
This paper documents experiments and CFD simulations of the hydrodynamics of our two-phase (water, air) laboratory internal loop airlift reactor (40 l). The experiments and simulations were aimed at obtaining global flow characteristics (gas holdup and liquid interstitial velocity in the riser and in the downcomer) in our particular airlift configurations. The experiments and simulations were done for three different riser tubes with variable length and diameter. Gas (air) superficial velocities in riser were in range from 1 to 7.5 cm/s. Up to three circulation regimes were experimentally observed (no bubbles in downcomer, bubbles in downcomer but not circulating, and finally the circulating regime). The primary goal was to test our CFD simulation setup using only standard closures for interphase forces and turbulence, and assuming constant bubble size is able to capture global characteristics of the flow for our experimental airlift configurations for the three circulation regimes, and if the simulation setup could be later used for obtaining the global characteristic for modified geometries of our original airlift design or for different fluids. The CFD simulations were done in commercial code Fluent 6.3 using algebraic slip mixture multiphase model. The secondary goal was to test the sensitivity of the simulation results to different closures for the drag coefficient and the resulting bubble slip velocity and also for the turbulence. In addition to the simulations done in Fluent, simulation results using different code (CFX 12.1) and different model (full Euler–Euler) are also presented in this paper. The experimental measurements of liquid interstitial velocity in the riser and in the downcomer were done by evaluating the response to the injection of a sulphuric acid solution measured with pH probes. The gas holdup in the riser and downcomer was measured with the U-tube manometer. The results showed that the simulation setup works quite well when there are no bubbles present in the downcomer, and that the sensitivity to the drag closure is rather low in this case. The agreement was getting worse with the increase of gas holdup in the downcomer. The use of different multiphase model in the different code (CFX) gave almost the same results as the Fluent simulations. 相似文献
12.
Chun-Chong Fu Yung-Jung Hsu Gia-Chi Chen Yi-Ren Lin Wen-Teng Wu 《Chemical engineering science》2004,59(14):3021-3028
A modified networks-of-zones model is developed to investigate the mixing performance of three tower-type bioreactors, namely airlift, bubble column and net column (a short notation for airlift reactor with a net draft tube) reactors. A key parameter β, that characterizes the interaction intensity between the neighboring uprising and down-coming streams, is identified to play a decisive role in determining the mixing characteristics of the three tower-type reactors. The concentration dynamics and mixing behaviors of the three types of reactor are studied with a maximum non-zero eigenvalue analysis (the slowest mode analysis). The model predictions are validated with experiments of heat mixing. The superior mixing performance of the net column reactor over the airlift and bubble column reactors is clearly revealed with the present model and is experimentally verified, and can be linked to an optimum mass transfer between the neighboring uprising and down-coming streams, provided by the net draft tube. This optimum mass transfer is a direct result of a balanced flow distribution in the axial and radial directions. 相似文献
13.
The contribution of local regions to global mass transfer holds the key to optimization and scale-up of a reactor. Extensive study has been conducted to investigate gas-liquid mass transfer occurring in the internal airlift loop reactor, but mostly restricted to global mass transfer performance. A cold model forced circulation internal airlift loop reactor was employed and divided into six regions in which dissolved oxygen concentration in slurry and mass transfer interfacial area were measured respectively. Different models were utilized to calculate volumetric mass transfer coefficient. Contributions of individual region to global mass transfer performance were calculated and compared. It was found that mass transfer coefficient and mass transfer interfacial area of individual region increases with increasing superficial gas velocity and slurry feed flowrate. The feed affected region has the greatest mass transfer coefficient and volumetric mass transfer coefficient, contributing more than 30% to global mass transfer in most operating condition. Mass transfer interfacial area is close in the gas distributor region, feed affected region and the gas-slurry separator region. In the present work, circulating bubbles are rare and contribute negligibly to the global mass transfer. Global volumetric mass transfer coefficient is close to that of the gas-slurry separator region, ranging from 0.02 to 0.1 1/s. Comparison of kLa is made between this work and literatures, suggesting a great improvement of mass transfer due to external liquid circulation. 相似文献
14.
15.
带辐照改性聚丙烯填料的气升式内环流反应器处理废水的研究 总被引:1,自引:0,他引:1
应用高能射线辐照技术,在聚丙烯填料表面接枝丙烯酸单体进行改性。将此改性填料应用于气升式内环流反应器中,并对模拟生活废水进行间歇法和连续法处理。实验结果表明,该反应器运行稳定,适应浓度范围广,COD去除率较高,出水COD浓度波动小。 相似文献
16.
在高径比为22的三相内环流反应器中,常温常压下,根据动量平衡原理建立了空气-水-石英砂三相物系的循环液速模型,并建立了上升区气含率、上升区固含率和底部换向区阻力系数模型;考察了在不同颗粒粒径下,表观气速对上升区固含率和液体循环速度的影响。结果表明:当粒径(ds)≤0.3mm时,上升区固含率随表观气速的增加变化呈平缓趋势,当0.3mmds≤1.2mm时,上升区固含率随表观气速的增加而呈先下降后增加的趋势;不同粒径下上升区循环液速均随表观气速的增加而增加;气含率、固含率和循环液速的计算值和实验值吻合较好,其平均相对误差分别为6.32%、4.56%和11.97%。 相似文献
17.
Jennifer V. Littlejohns 《Chemical engineering science》2009,64(19):4171-4177
The addition of select polymer beads to stirred tank bioscrubber systems has been shown to greatly enhance the removal and treatment of toxic VOCs via the capture and sequestration of poorly soluble compounds such as benzene, and the release of these materials, based on equilibrium partitioning, to microorganisms in the aqueous phase. In this study, oxygen volumetric mass transfer coefficients were determined for an 11 L airlift vessel containing tap water alone, tap water with Nylon 6,6 polymer beads (10% v/v), and tap water with silicone rubber beads (10% v/v), over various inlet gas flow rates, with the aim of initially characterizing a low-energy pneumatically agitated reactor (concentric tube airlift). In addition, oxygen transfer rates into the airlift with and without polymers with high oxygen affinity were determined. To further characterize this reactor system, a residence time distribution analysis was completed to determine hydrodynamic parameters including the Peclet number (Pe), circulation time (tc) and mixing time (tm) over various gas flow rates for the airlift containing tap water with and without silicone rubber. It was found that the addition of silicone rubber beads, which has a high affinity for oxygen, reduced the measured volumetric mass transfer coefficient relative to a system without polymers due to oxygen sorption during the dynamic period of testing, but increased the overall amount of oxygen that was transferred to the system during the dynamic period. The addition of Nylon 6,6, which has very low oxygen uptake, allowed for estimation of the physical effect of solids addition on gas-liquid mass transfer and it was found that there was no effect on the measured volumetric mass transfer coefficient relative to a system without polymers. However, hydrodynamic parameters revealed that the addition of silicone rubber into an airlift vessel improves liquid phase mixing. This investigation has defined key operational features of a low-energy three-phase airlift bioscrubber system for the treatment of toxic VOC substrates. 相似文献
18.
Based on the combustion characteristics of petroleum coke, a coupled gas-solid fluidized bed combustor is proposed in this work. The overall circulating system of the fluidized bed mainly consists of a dense-phase airlift loop section and a dilute-phase riser section. In different operating conditions, the particle flow behaviors in the airlift loop section were investigated systematically by using optical fiber probe. The experimental results show that the airlift loop section can be divided into four regions, namely, the draft tube, the annulus, the bottom region and the particle diffluence region, in which the average cross-sectional solids fraction and the particle velocity are different. The overall solids fraction difference between the draft tube and the annulus provides a driving force for particle circulation flow in the airlift loop section, and the driving force increases with increasing the superficial gas velocity in the draft tube. The ratio of the particle mass flux in the annulus to that in the riser ranges from 8 to 16. The particle circular velocity in the annulus also increases with increasing the superficial gas velocity in the draft tube. Moreover, a model about the particle circular velocity is established on the basis of energy equilibrium principle. 相似文献
19.
Airlift column reactors have been widely used in bioprocesses. The design, scale-up, and performance evaluation of such reactors all require extensive and accurate information about the gas–liquid flow dynamics, particularly as computational fluid dynamics (CFD) has become more popular in the last decade. However, due to the limitation of most conventional techniques for gas–liquid flow dynamics measurement, only global hydrodynamic parameters (e.g., cross-sectionally averaged liquid circulation velocity, overall gas holdup, and overall mass transfer rate) have been extensively studied. The local flow characteristics (e.g., the macro-mixing and the turbulence intensity) remain unclear. In this study, we use the computer automated radioactive particle tracking (CARPT) technique to investigate the details of the multiphase flow dynamics in a draft tube airlift bioreactor, such as the liquid velocity field, turbulent kinetic energy field, distributions of shear stresses, etc. The flow structures in the whole reactor, as well as the structure in individual regions, i.e., the top, the bottom, the riser, and the downcorner are also characterized. We found significantly large turbulent kinetic energy in the top and the bottom regions, with spots of very high shear stress, which were also found in the vicinity of the sparger. The results also suggest that the top and bottom clearances have significant effects on the flow structures, which may have substantial effects on the bioreactor performance. 相似文献
20.
Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm~(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation. 相似文献