首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas hydrate formation experiments were conducted with a methane-ethane mixture at 273.7 or 273.9 K and 5100 kPa and using water droplets or water contained in cylindrical glass columns. The effect of kinetic inhibitors and the water/solid interface on the induction time for hydrate crystallization and on the hydrate growth and decomposition characteristics was studied. It was found that inhibitors GHI 101 and Luvicap EG delayed the onset of hydrate nucleation. While this inhibition effects has been reported previously some unusual behaviour was observed and reported for the first time. In particular, the water droplet containing GHI 101 or Luvicap EG was found to collapse prior to nucleation and spread out on the Teflon surface. Subsequently, hydrate was formed as a layer on the surface. Catastrophic growth and spreading of the hydrate crystals was also observed during hydrate formation in the glass columns in the presence of the kinetic inhibitor. Finally, when polyethylene oxide (PEO) was added into the kinetic inhibitor solution the memory effect on the induction time decreased dramatically.  相似文献   

2.
Dissociation of small methane hydrate samples formed from water droplets of size 0.25-2.5 mm has been investigated below the ice melting point in the temperature range of 240-273 K, where the self-preservation effect is observed for bulk hydrates. The experiments included optical microscopy observations combined with P-T measurements of the dissociation conditions for the methane hydrates. For the first time, the formation of supercooled liquid water during the hydrate dissociation was reliably detected in the temperature range of 253-273 K. The formation of the liquid phase was visually observed. The induction time of the ice nucleation for the metastable liquid water depended from the dissociation temperature and a size of water droplets formed during the hydrate dissociation. It was found that in the temperature range of 253-273 K values of the dissociation pressure for the small hydrate samples fall on the extension of the water-hydrate-gas equilibrium curve into the metastable region where supercooled water exist. The average molar enthalpy of 51.7 kJ/mol for the dissociation of the small methane hydrate samples in the temperature range of 253-273 K was calculated using Clausius-Clapeyron equation. This value agrees with the enthalpy of dissociation of bulk methane hydrates into water and gas at temperatures above 273 K.  相似文献   

3.
Dry water (DW) has been recently demonstrated to be an effective medium for methane storage in a hydrated form. Here, a series of experiments have been carried out on dry water methane hydrates (DW-MH) to investigate their formation and dissociation rates, storage capacity and structural characteristics. The result shows that the storage capacity of MH increases at least 10% by using DW relative to using surfactants like sodium dodecyl sulfate (SDS) solution. Also, it is found that controls on pressure-temperature (P-T) condition have influences on the induction and reaction time of DW-MH formation, i. e. the induction and reaction time are much shorter when the reaction cell is cooled to ~ 3 °C first. On the basis of Raman spectra, the hydration number is calculated as 5.934 ± 0.06 at different positions of the DW-MH, which suggests that the sample is very homogeneous. The dissociation process of the DW-MH sample exhibits a rapid release of methane gas at the first stage of dissociation. Although hydrate dissociation is prevented by the effect of self preservation, most methane gas has released from the hydrate, however, before the self preservation occur.  相似文献   

4.
使用高速摄影技术对2 μl液滴中四丁基溴化铵(TBAB)水合物晶体的成核与生长进行了实验研究。对不同过冷度与不同浓度(10%,20%,30%,质量分数)的液滴中TBAB水合物晶体的生长特性进行了分析并建立了相应的数学模型,推导出TBAB水合物形成活化能Ea为-14.99 kJ/mol。研究结果表明,通过以液滴滴落过冷固体表面的方式可以有效缩短水合物成核的诱导时间,促进水合物的快速生成。为解决水合物在工业中大规模应用的难题提供了新方法。  相似文献   

5.
The kinetics of formation of clathrate hydrates of methane was investigated in a water-in-oil emulsion using high-pressure differential scanning calorimetry in the range 10-40 MPa, at various temperatures. At high driving force, the heat peak related to the formation of hydrates has a regular and symmetric shape, and its height and width depend on the gas pressure and sub cooling degree. At near equilibrium conditions, hydrate formation is delayed by more than 1 h, but is still clearly observable. A model based on crystal growth theory, coupled with a normal distribution of induction times to take into account the germination in a population of micro-sized droplets, is proposed to represent the hydrate formation rate versus time in the particular case of water-in-oil emulsions. It uses four parameters which appear strongly correlated to the experimental conditions: the growth rate constant, the over saturation of gas in the water phase, the average and standard deviation of the induction time distribution.  相似文献   

6.
Fiber coalescence is an effective oil–water separation technology. In this article, the micro-coalescence process of droplets on fiber was studied through high-speed camera technology, and the hydrodynamics and morphology evolution in the process of droplet-fiber coalescence were explored and compared with non-fiber system. The results show that the change of the droplet surface morphology is local at the initial stage of the coalescence process. The droplet morphology changes obviously near the neck. The growth rate of the liquid bridge and the propagation speed of capillary wave in droplet-fiber system are higher than those in non-fiber system. At 0.8 ms, the capillary waves' polar angle difference between the two conditions reaches 10.44°. There is an obvious periodicity and damping attenuation mechanism in the oscillation process. In the droplet-fiber system, the oscillation process attenuates faster and the average oscillation period is shorter. The droplet relaxes to a stable state more quickly.  相似文献   

7.
The present work describes a method for producing calcium alginate hydrogel microcapsules in the size range of 50-70 μm by means of a piezoelectric drop-on-demand inkjet device. Particles were prepared by emitting droplets of 0.5% and 1% (w/w) sodium alginate solutions into a magnetically stirred pool of CaCl2 solution of variable viscosity ranging from 1 to 100 mPas. The effect of viscosity on the morphology of the resulting microcapsules was systematically investigated — lower viscosity of the receiving solution has lead to the formation of elongated particles, medium viscosities lead to spherical capsules, and for higher viscosities flattened particles were obtained. The applied voltage used for driving the piezoelectric inkjet print-head was found to be the most significant parameter for influencing the droplet size. The duration of the voltage pulse or the droplet viscosity had only minor effects. The release rates of two model substances (methylene blue dye and vitamin B12) from alginate beads were measured and their effective diffusion coefficients determined as function of alginate concentration.  相似文献   

8.
This paper investigates the part played by internal mixing in the evaporation of droplets of mixtures with large numbers of components. Continuous thermodynamics—the use of probability density functions rather than discrete components to represent composition—is applied as the mixture model, and continuous mixture formulations of the liquid phase transport equations and diffusivities are developed. Sample calculations are presented for a mixture with a single distribution function as well as for mixtures with two widely separated distributions (“dumbbell” mixtures, composed of very light and very heavy fractions). The calculations show that internal mixing generally has a smaller influence on droplet behaviour for a mixture with a large number of components than it does for a binary mixture, and give some guidance as to when a well-mixed droplet model may—or may not—be a good approximation for practical work.  相似文献   

9.
Direct conversion of water droplets to methane hydrate in crude oil   总被引:1,自引:0,他引:1  
Water droplets suspended in a crude oil were converted to methane hydrate by pressurization in an autoclave cell. Droplet size distributions were monitored using a focused beam reflectance method (FBRM) particle size analyzer as the water converted to hydrate. The droplet size distribution did not change significantly during conversion of nearly all the water to hydrate. The preservation of the distribution during conversion indicates that water droplets act as individual reactors and supports a hydrate shell formation model. Water droplet size distributions were measured with the FBRM probe at multiple shear rates in four crude oils (Albacora Leste, Conroe, Petronius, and a West African oil) with various surface tensions and viscosities. The water droplet size distributions, and thus hydrate particle distributions, were found to be lognormal with breadth increasing with mean. A correlation model has been developed to predict the entire size distribution of water droplets in these oils as a function of viscosity, interfacial tension, and shear rate. The model has been extended to represent gas hydrate particle size distributions in oil after conversion.  相似文献   

10.
Wetting behaviors on a hydrophobic nanopatterned surface, which are of primary consideration in the design of superhydrophobic surfaces, are studied on an analytic model that shows the hole-patterned substrate is more favorable for water droplets to nucleate on the inside of holes based on nucleation theory. After droplet nucleation, the transition from Wenzel state to Cassie–Baxter state may occur during the growth stage. The calculation of the free energy of droplets during the growth stage indicates that the wetting transitions depend on the volume of the droplets, and Wenzel state or Cassie–Baxter state depends on the absolute size and relative size of the geometrical morphology of the nanoholes.  相似文献   

11.
A concept and appropriate theoretical construction have been proposed to describe initial stage of hydrate layer formation at the interface between water and hydrate-forming gas. The model presented indicates that this stage (or induction period) is accompanied by the dissolution of gas in water, as well as the formation and growth of hydrate in the bulk zone on impurity particles near the contact boundary. An analytical solution was obtained for the characteristic time during which the volume content of the hydrate phase at the contact boundary reaches one and, thus, nuclei form as a film prior to a hydrate layer at the gas–water boundary. This characteristic time is accepted as the induction time. According to the obtained formula, the induction period depends inversely on static pressure and in inverse two-thirds proportion on the number of impurity particles per unit volume of water. The problem of the formation and growth of hydrate at the interface between the hydrate layer and aqueous gas solution has been considered and solved. The temperature fields caused by heat generated during hydrate formation on the contact surface of hydrate massif and gas solution are analyzed.  相似文献   

12.
Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high‐pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear‐thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well‐fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3502–3518, 2018  相似文献   

13.
The synthesis of micron-sized polymer particles with a core-shell pomegranate-like morphology is presented. The proposed polymerization technique takes advantage of a reaction-induced micro-phase separation within a suspended organic liquid droplet containing monomer, a chemical initiator, a steric stabilizer, and a poor solvent for the polymer. With an increase in monomer conversion, the monomer droplet suspended in a continuous aqueous medium is transformed first into a micro-capsule with a thick pericellular membrane, and eventually into a polymer particle packed with 300-500 nm polymer sub-particles. The experimentally observed evolution of particle morphology indicates that the reaction pathway is strongly influenced by micro-phase separation and transport phenomena. In the first stage of polymerization, a pseudo-homogeneous polymerization takes place at the droplet surface, followed by a starved macro-dispersive polymerization in the inner region where polymer precipitates out from the solvent phase as nano-sized sub-particles.  相似文献   

14.
利用超声波悬浮技术将四丁基溴化铵(TBAB)溶液液滴悬浮,观测了不同TBAB质量分数(15%、20%、25%)时的水合物生长过程,并与悬挂液滴进行了对比。实验发现,超声波悬浮的液滴处于快速旋转状态,液滴呈扁球状,水合物生长速率较快,但当液滴中含有气泡时生成水合物的诱导时间延长。总结出超声波悬浮状态下TBAB水合物生长方式可以分为两大类:由内而外,由外而内。由外而内又可以分为单平顶式、双平顶式和包裹式。建立悬浮液滴和悬挂液滴的传热模型,通过对比发现,超声波可以加快悬浮液滴的传热效率,加速水合物的生成和生长。该实验为观测水合物生长提供了一种新的方法。  相似文献   

15.
The hydrate formation of CH4+C2H4 mixture was studied experimentally in two different cases, with and without the presence of sodium dodecyl sulfate (SDS) in water. The results manifested that the presence of SDS could not only accelerate the hydrate formation process, but also increase the partition coefficient of ethylene between hydrate and vapor drastically. The partition coefficients of ethylene between hydrate and vapor for methane + ethylene + water with the presence of 500 ppm SDS in water were then systematically measured. The experimental temperature ranged from 273.15 to 278.15 K, the pressure ranged from 2.5 to 5.5 MPa, the initial gas-liquid volume ratio ranged from 95 to 240 standard volumes of gas per volume of liquid, and the mole percentage of ethylene in feed gas mixture ranged from 5.28% to 79.36%. The results demonstrated that ethylene could be enriched in hydrate phase and partition coefficients were increased with the presence of SDS in water. This conclusion is of industrial significance; it implies that it is feasible to recover ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

16.
Using gas hydrates as materials for storage and transportation of natural gas have attracted much attention in recent years. However, there are two barriers in industrializing this new method. Firstly, methane hydrate induction time is relatively high. On the other hand the amount of gas trapped in methane hydrate crystals is too low. In this survey, silver nanoparticles were synthesized using a chemical reduction method and introduced to the hydrate reactor. Experiments were conducted at initial reactor pressures of 4.7 MPa and 5.7 MPa. At each pressure three independent experiments were performed. According to the results, in the presence of silver nanoparticles, methane hydrate induction time decreased by 85% and 73.9%, and the amount of methane trapped in hydrate crystals increased by 33.7% and 7.4% at the pressures of 4.7 MPa and 5.7 MPa respectively.  相似文献   

17.
徐纯刚  李小森  陈朝阳  蔡晶 《化工学报》2011,62(6):1701-1707
引言 化石燃料燃烧释放的二氧化碳气体已经被证明是导致全球气温升高和气候变化的主要温室气体.火力发电厂制造的二氧化碳气体约占全球每年产生的二氧化碳的总量的1/3.二氧化碳分离主要有3种途径:燃前除碳(pre-combustion de-carbonization),富氧燃烧以及燃后工序中从烟气中分离二氧化碳.二氧化碳气在电厂中的分离捕集可以在烟气中(燃后捕集)和IGCC工艺(燃前捕集)中实现.  相似文献   

18.
The ignition of oil and coal particles and the combustion time of the coal-oil mixtures droplet, have been discussed on the basis of a mathematical model. When the COM droplets are larger than those of pure oil then ignition of the COM spray is more difficult. Combustion of the oil part of the mixture needs less time as it has a larger surface area. It has been found that when suitably fine coal particles are used in COM preparation and when the particles do not agglomerate, the overall combustion time of the COM droplet can be shorter than that of pure oil droplets of the same size.  相似文献   

19.
乙醇添加剂能显著改变去离子水基液滴碰壁动态特性。本文设计并搭建了液滴碰壁动态演化及传热研究实验台,并就溶液表面张力、液滴韦伯数(We)、壁面温度等对液滴碰壁的特性影响进行了实验研究。结果表明乙醇添加剂能够有效增强液滴润湿特性,促进液滴的雾化和破碎现象,同时抑制液滴反弹能力。并且这一能力随着乙醇溶液浓度的增大而增强。润湿特性随着液滴We的增大呈现出先增强后发生反弹现象的趋势,乙醇添加剂能够有效地抑制这种反弹趋势,并使混合液滴继续发生铺展现象。壁面温度125℃时,当We由15增大到33时,水基液由铺展阶段过渡到反弹阶段,而添加乙醇使得液滴继续铺展,没有发生反弹现象。乙醇添加剂能够明显地提高液滴由铺展到反弹的临界转变温度(TCHF),扩大液滴核态沸腾对应的温度区域,延迟液滴进入过渡沸腾阶段。  相似文献   

20.
曾佑林  姜水生  文华  张新宇 《化工进展》2021,40(8):4445-4455
为探究荷叶表面的液滴撞击行为规律,本文利用高速摄像机以14000帧/秒的帧率分别记录水滴和4种不同相对分子质量的聚氧化乙烯(polyethylene oxide,PEO)水溶液液滴竖直撞击荷叶表面的动力过程,其撞击速度为0.3~3m/s。实验结果表明,水滴与低相对分子质量(5×104)的PEO液滴撞击荷叶表面的行为现象相似,两者随撞击速度增加依次有规则反弹、向上发射卫星液滴、不规则反弹(或部分反弹)、液滴破碎和液指断裂分离小液滴等现象发生,但水滴的接触时间更短,最大铺展系数也更小。中等相对分子质量(3×105)PEO液滴在低速和高速撞击时分别为振荡弹起模态和振荡模态,临界速度为1.13m/s。高相对分子质量(1×106、4×106)的PEO液滴,其高分子长链与表面交互作用显著增强,表现出很强的黏性,撞击后反弹完全被抑制,均黏附沉积于荷叶表面;液滴发生沉积的临界Oh数为0.0544,且Oh数越大,液滴越难发生反弹。速度一定时,相对分子质量3×105以上的3种PEO液滴的最大铺展系数均小于水滴;三者的上升系数随速度增加先减小后保持基本稳定或略微增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号