首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
The present paper analyses the gas/liquid mass transfer process employing carbon dioxide as gas phase and ternary water in oil microemulsions as absorbent liquid phases. The liquid phases were obtained by a direct mixing of water, 2,2,4-trimethylpentane and sodium bis(2-ethylhexyl)sulfosuccinate (Aerosol OT). The characteristics of the microemulsions employed as liquid phase have been analysed to interpret the experimental results observed in the absorption process. More specifically, they have been analysed in relation to the percolation phenomenon and the effects produced by this phenomenon upon the different physical properties. Characteristic results have been observed for the gas/liquid mass transfer using microemulsions, because ternary microemulsions with high viscosity values in relation to pure water show a faster absorption process than the carbon dioxide/water system. This characteristic behaviour has been explained on the basis of the microemulsions internal dynamics.  相似文献   

2.
Sinking CO2 composite particles consisting of seawater, liquid CO2, and CO2 hydrate were produced by a coaxial flow injector fed with liquid CO2 and artificial seawater. The particles were injected into a high-pressure water tunnel facility to permit determination of their settling velocities and dissolution rates. Injections were performed at fixed pressures approximately equivalent to 1200-m, 1500-m, and 1800-m depths and at temperatures varying from approximately 2 to 5 °C. Immediately after injection, the cylindrical particles were observed to break away from the injector tip and often aggregated into sinking clusters. The seawater flow in the tunnel was then adjusted in a countercurrent flow mode to suspend the particles in an observation window so that images of the particles could be recorded for later analysis. The flow would often break or cause rearrangement of some of the clusters. Selected individual particles and some clusters were studied until they became too hydrodynamically unstable to follow. In general, the flow required to suspend clusters or individual particles decreased with time as the particles dissolved. For example, one particle was produced and observed for over 6 min at an average pressure of 15.022 MPa and an average temperature of 5.1 °C. Its sinking rate, determined from the flow required for stabilization, changed from 37.2 to 3.3 mm/s over this time. Particle sinking rates were compared to correlations from the literature for uniform cylindrical objects. Reasonable agreement was observed for short times; however, the observed decrease in sinking velocity with time was greater than that predicted by the correlations for longer times. Particle dissolution rates, based on changes in diameter, were also determined and varied from 5 to . A pseudo-homogeneous mass transfer model was used to predict single-particle dissolution rates. Good agreement was achieved between experimental dissolution data and the modeling results.  相似文献   

3.
Characterization of flow phenomena induced by ultrasonic horn   总被引:1,自引:0,他引:1  
Mean flow and turbulence parameters have been measured using laser Doppler anemometer (LDA) in ultrasound reactor. The effects of the ultrasonic power have been investigated over a power density (P/V) range of 15-. The liquid circulation velocities are dominant in the zone nearer to the source of energy and are substantially low at the walls and at the bottom of the reactor. The levels of turbulence kinetic energy and dissipation rate are high near the horn and decrease rapidly with increasing distance from the horn. Average turbulent normal stresses are larger than the turbulent shear stresses. However, they are much lower than stirred reactors when compared at the same power consumption per unit mass. Comparisons of LDA measurements and computational fluid dynamics (CFD) predictions have been presented. The good agreement indicates the validity of the CFD model. The flow information has been extended for the prediction of mixing time. For uniform mixing in ultrasound-assisted reactors, optimum power density and diameter of the vessel is needed, yet it is far less effective than conventional stirred vessel. The possibility of optimization has been suggested in terms of power dissipation and the vessel size.  相似文献   

4.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

5.
Conductivity measurements in PEO30MI polymer electrolytes with M=Li, Na, K, Rb, or Cs over the temperature range from about 65 to 200 °C show an increasing tendency for salt precipitation with increasing cation size. The salt precipitation in these complexes upon heating is revealed by the decrease of the dc conductivity starting at a critical temperature Tc. Whereas LiI and NaI complexes do not show precipitation effects, Tc monotonically decreases from about 140 to 65 °C when changing the salt component from KI via RbI to CsI. For the PEO-RbI system, precipitation is further investigated by nuclear magnetic resonance (NMR) and tracer diffusion experiments. NMR analysis unambiguously demonstrates the onset of RbI salt precipitation and the increase of the precipitate fraction with increasing temperature. In diffusion experiments on PEO30RbI with the radiotracers and , the precipitation effect is manifested by anomalous features in the penetration profiles, however, without noticeable changes in their depth range. Combining the resulting tracer diffusion coefficients with the dc conductivity data enables us to assess crucial parameters characterizing ionic transport in PEO30RbI.  相似文献   

6.
The oxidative absorption of hydrogen sulfide (H2S) into a solution of ferric chelate of trans-1,2- diaminocyclohexanetetraacetate (CDTA) was studied in a counter-current laboratory column randomly packed with 15 mm plastic Ralu rings. The present investigation takes concern about the Kraft pulping situation where dilute H2S concentrations are omnipresent in large-volume gas effluents. A fractional two-level factorial approach was instigated to determine the significance of six operating variables, namely the solution's alkalinity (pH; 8.5-10.5), the liquid mass flow rate (L;1.73-), the solution's ionic strength (IC;0.01-), the gas mass flow rate (G;0.19-), the inlet H2S concentration (CH2S,0;70-430 ppm) and the initial ferric CDTA concentration (CFe,0;100 -). Initially, a Plackett-Burman design matrix of seven duplicated experiments revealed that pH is the leading factor controlling the H2S conversion rate while the ionic strength and ferric CDTA concentration effects remained negligible within the factorial domain. Surface response analysis based on 11 duplicated factorial experiments plus 10 central composite trials revealed that the H2S conversion significantly increases with liquid flow rate but decreases with growing H2S load up. Further examination about the influence of ferric CDTA on H2S absorption rate was set up over a broader concentration range (CFe,0;0- at pH of 9.5 and 10.5. It showed good potential at as H2S conversion increased by a significant 25% for both pH values in comparison to pure alkaline solutions containing no ferric CDTA.  相似文献   

7.
Aqueous solutions of potassium glycinate were characterized for carbon dioxide absorption purposes. Density and viscosity of these solutions, with concentrations ranging from 0.1 to 3 M, were determined at temperatures from 293 to 313 K. Diffusivity of CO2 in solution was estimated applying the modified Stokes-Einstein relation. Solubilities of N2O at the same temperatures and concentrations were measured and the ion specific parameter based on Schumpe's model was determined for the glycinate anion; the solubilities of CO2 in these solutions were then computed.The reaction kinetics of CO2 in the aqueous solution of potassium glycinate was determined at 293, 298 and 303 K using a stirred cell reactor. The results were interpreted using the DeCoursey equation for the calculation of the enhancement factor. The rate of absorption as a function of the temperature and solution concentration for the conditions studied was found to be given by the following expression:
  相似文献   

8.
The kinetics absorption of CO2 into aqueous blends of 2-(1-piperazinyl)-ethylamine (PZEA) and N-methyldiethanolamine (MDEA) were studied at 303, 313, and 323 K using a wetted wall column absorber. The PZEA concentrations in the blends with MDEA varied from 0 to to see the effect of PZEA as an activator in the blends with two different total amine concentrations (1.0 and ). Based on the pseudo-first-order condition for the CO2 absorption, the overall second-order reaction rate constants were determined from the kinetic measurements. The kinetic rate parameters were calculated and presented at each experimental condition.  相似文献   

9.
A novel biphasic process concept for the synthesis of propylene oxide (PO) from propylene is presented, using the long known catalyst, methyl trioxorhenium and aqueous hydrogen peroxide as the oxidant. Propylene is fed as gas, which is transported to the liquid phase containing the oxidant, catalyst and methanol as a cosolvent that improves propylene solubility. The selective oxidation produces PO which is distilled easily from the liquid phase taking advantage of the relatively low normal boiling point of PO compared to those of methanol and water. The process satisfies the sustainability principles of waste minimization, use of benign reagents and process intensification at mild conditions. The process produces PO in yields exceeding 98%. It operates at essentially ambient temperature and moderate pressures , using easily recyclable, low hazard aqueous methanol, as solvent. The catalyst, methyl trioxorhenium, is robust under the operating conditions. A key aspect of the innovation is the use of nitrogen gas pressure to enhance propylene availability in the liquid phase increasing its conversion from ∼80% (without N2) to complete (with N2) in a few hours. These findings pave the way for catalyst durability and recycle studies, aimed at demonstrating a continuous process that is economically and environmentally sustainable compared to existing processes.  相似文献   

10.
The intrinsic rate constants of the CaO-CO2 reaction, in the presence of syngas, were studied using a grain model for a naturally occurring calcium oxide-based sorbent using a thermogravimetric analyzer. Over temperatures ranging from 580 to 700 °C, it was observed that the presence of CO and H2 (with steam) during carbonation caused a significant increase in the initial rate of carbonation, which has been attributed to the CaO surface sites catalyzing the water-gas shift reaction, increasing the local CO2 concentration. The water-gas shift reaction was assumed to be responsible for the increase in activation energy from 29.7 to 60.3 kJ/mol for limestone based on the formation of intermediate complexes. Changes in microporosity due to particle sintering during calcination have been credited with the rapid initial decrease in cyclic CaO maximum conversion for limestone particles, whereas the presence of steam during carbonation has been shown to improve the long-term maximum conversion in comparison to previous studies without steam present.  相似文献   

11.
In order to elucidate the dynamic performance of the CO2 ocean disposal process, effects of operating parameters, such as gas flow rate, salinity and temperature, on the absorption of CO2 into seawater were examined. The rate-based model consisting of the rates of chemical reaction and gas-liquid mass transfer was developed for simulating dynamic process of CO2 ocean disposal. In modeling, non-ideal mixing characteristics in the gas and liquid phases are described using a tanks-in-series model with backflow. Experiments were performed to verify dynamic CO2 absorption prediction capability of the proposed model in a cylindrical bubble column. The operation was batch and continuous with respect to liquid phase and gas phase, respectively. Experimental results indicate that the CO2 gas injection rate increased the absorption rate but the increase in salinity concentration caused inhibition of the absorption of CO2. The proposed model could describe the present experimental results for the dynamic changes and the steady-state values of dissolved CO2 concentration and hydrogen ion concentration. The proposed model might effectively handle the prediction of the absorption of CO2 into seawater in the CO2 ocean disposal.  相似文献   

12.
The two-phase flow behaviour in porous media is determined on the basis of capillary pressure-saturation-relative permeability relationships (Pc-S-Kr). These relationships are highly non-linear and obtained by laboratory experiments on porous samples, typically around 10-12 cm in length. It is normally assumed that these samples are homogeneous; however it is well-known that this is in fact not the case and that even at this scale micro-scale heterogeneities exist. Two-phase flow experiments on soils with different properties (e.g., particle and pore size distribution, permeabilities, etc) result in different Pc-S-Kr relationships implying that they cause non-uniqueness in these curves. Recent work has shown that the presence of the micro-heterogeneities has a significant effect on the measured Pc-S-Kr relationships and they cause non-uniqueness in these relationships. In the previous work in this area, the micro-heterogeneity effects on the Pc-S-Kr relationships have been analysed in a number of contexts, e.g., uniformly distributed heterogeneities (simplified cases), various binary sand combinations, hydraulic parameters (e.g., entry pressure, permeability), boundary conditions, etc. There is also some evidence that the intensity and distribution of the micro-heterogeneities affect the Pc-S-Kr relationships. In the present work we use numerical simulations to investigate further the nature of these effects, in particular how the interplay between the intensity and random distribution of micro-heterogeneities affect the Pc-S-Kr relationships. Seven randomly heterogeneous patterns have been defined. These domains represent coarse sand media with fine sand blocks embedded in them. The domain size () has been chosen so that it represents a typical laboratory scale device. The results of the simulations show that it is particularly important to take into account both the intensity and distribution of heterogeneity when determining the effective Pc-S-Kr relationships of a sample. Further, there is a complex interplay between the intensity and distribution of micro-scale heterogeneities which determines the Pc-S-Kr curves. This observation is in contrast to the results of domains with uniformly distributed heterogeneities. We have found that in general if the intensity of heterogeneity is high; the irreducible wetting phase saturation (Siw) of the sample is also high. The direction of flow and the orientation of the samples also have significant effects. For example, the injection of an immiscible phase from the top (vertically downward) of water saturated porous domain leads to a lower Siw than injecting on horizontal plane. On the other hand, injection from the bottom (vertically upwards) leads to a higher Siw. As expected, the distribution of heterogeneity has a significant effect on the saturation distribution and the shape of the Pc-S-Kr curves. However, we show that if the heterogeneities are distributed in such a way that they are closer to the boundary of injection, the irreducible wetting phase saturation is higher.  相似文献   

13.
A full spectrum of proof-of-concept research from nanoparticle preparation and characterization, in vitro drug release, cellular uptake and cytotoxicity, to in vivo pharmacokinetics and xenograft tumor model is developed in this paper to demonstrate how nanoparticles of biodegradable polymers can be applied to formulate anticancer drugs to avoid use of toxic adjuvant and to enable sustained and controlled chemotherapy. Paclitaxel-loaded poly(lactic-co-glycolic acid) nanoparticles were prepared by solvent extraction/evaporation with vitamin E TPGS as the emulsifier, which has much higher emulsification effects and better biocompatibility than other chemical emulsifiers such as polyvinyl alcohol (PVA), resulting in a high drug encapsulation efficiency, high uptake of nanoparticles by cancer cells, and sustainable pharmacokinetics. In vitro C6 cell mortality experiments demonstrated that the nanoparticle formulation was five times more effective than Taxol®. In vivo pharmacokinetics measurements showed that the nanoparticle formulation had a comparable value of the area-under-the-curve (AUC) with that of Taxol®, but never exceeded the maximum tolerance level, and hence should greatly reduce the side effects compared with Taxol®. Moreover, the nanoparticle formulation realized a sustainable therapeutic time of 168 h in comparison with 22 h for Taxol® at a same dose of 10 mg/kg and achieved four times greater drug tolerance than Taxol®.  相似文献   

14.
Successive calcination-carbonation cycles, using CaO as sorbent, have been performed either in a classical fixed bed reactor or using a thermogravimetric analyser. Significant differences in carbonation efficiencies were obtained, possibly due to different conditions prevailing for CaO sintering during the calcination stage. The effect of the presence of CO2 on sintering was confirmed.A simple model of the decay of the carbonation capacity along cycles based on the specific surface area of non-sintered micrograins of CaO is able to predict the decrease of the extent of conversion obtained after 40 carbonations along calcination-carbonation cycles. The asymptotic extent of conversion is obtained when all the micrograins present within a grain are sintered. A detailed model of the carbonation shows that the voids present between the micrograins are filled up by carbonate when a critical thickness of the carbonate layer around each micrograin reaches 43 nm. Then, carbonation becomes controlled by diffusion at the scale of the whole grain, with the CO2 diffusion coefficient decreasing (at ) from 2×10-12 to as carbonation proceeds from 50% conversion to 76% (first cycle). This scale change for diffusion is responsible for the drastic decrease of the carbonation rate after the voids between micrograins are filled up.  相似文献   

15.
Commercial sorption-based air separation is usually done using nitrogen selective zeolites in pressure swing adsorption (PSA) systems. Separation of air by adsorption of less abundant oxygen is more desirable. In this study we have developed some stable oxygen selective sorbents with silver and cerium salts. AgCl, AgBr, AgI and CeCl3 all showed stable adsorption characteristics with pure component selectivity of O2/N2∼2.0-3.0 at 1 atm. For these salts heat of adsorption of oxygen was found to be slightly higher than that of nitrogen, which was also predicted by ab initio molecular orbital calculations by Chen and Yang (Ind. Eng. Chem. Res. 35 (1996) 4020). The adsorption capacity of these salts was increased by thermal dispersion on high surface area SiO2 support. AgBr thermally spread on SiO2 is the best sorbent obtained in this study. AgBr/SiO2 (1.0 g/g) showed a pure component oxygen selectivity of ∼3 at 1 atm and ∼5 at 7 atm. PSA simulations were used to show the feasibility of nitrogen production using AgBr/SiO2.  相似文献   

16.
The hydrodynamic characteristics of the MaxblendTM impeller have been investigated in the case of viscous Newtonian fluids. Both laboratory experiments and 3D finite element based computational fluid dynamics (CFD) simulations have been carried out. The power consumption, the mixing evolution yielding the mixing time, and the effect of baffles in the laminar and transition flow regimes have been determined. It was found that the limit Reynolds number between the laminar and transition regimes is approximately 25 and 38 for the unbaffled and baffled configurations, respectively. Based on the range of Reynolds numbers studied in this work, the best window performance of the MaxblendTM mixer where fast and homogenous mixing is achieved is the end of the laminar regime and the early transition regime with baffles.  相似文献   

17.
In this paper a numerical simulation study of dynamic behavior of a fluidized bed with liquid injection is presented. A continuum model has been developed taking into account the mass and energy balances of solid, gas as well as liquid to describe the temperature and concentration distributions in gas-solid-fluidized beds. The model considers the deposition efficiency of the liquid droplets as well as the influence of the spray nozzle region. For solving the non-linear partial differential equations with discrete boundary conditions a finite element method is used. Numerical computations have been done with two different schemes of time integration, a fully implicit and a semi implicit scheme. The complex correlations of mass and liquid flow rates, mass and heat transfer, drying, and transient two-dimensional air humidity, air temperature, particle wetting, liquid film temperature and particle temperature were simulated. The model was validated with transient measurements of the air temperature and air humidity at the outlet of a fluidized bed with water injection.  相似文献   

18.
Yue Liu  Zhongbiao Wu  Siyao Zhou 《Fuel》2011,90(7):2501-2507
This paper studied the effects of sulfate and chloride ions on bivalent mercury (Hg2+) absorption and reduction behaviors in a simulated WFGD system. The aqueous mercuric ion-sulfite system reduction behaviors were monitored and investigated using a UV-visible spectrum. Thereafter, the mechanism of Hg2+ reduction in the presence of sulfate and chloride ions was proposed. Experimental results revealed that both sulfate and chloride ions had inhibition effects on aqueous Hg2+ reduction to Hg0. The inhibition was assumed due to the formation of (in the presence of ) and / (in the presence of Cl). And it was found that complex was more stable than in excess of Cl. The formation of the above-mentioned complexes in the presence of and Cl would damp the formation of HgSO3, whose decomposition was assumed to be the key step of Hg2+ reduction.  相似文献   

19.
The milling behaviour of microcrystalline cellulose (MCC) and α-lactose monohydrate (αLM) in an oscillatory single ball mill has been analysed by using the Distinct Element Method (DEM). The experimental results suggest that the milling behaviour of αLM is more strongly influenced by the milling frequency as compared to MCC. A similar conclusion is also drawn from the DEM results. The milling behaviour of MCC and αLM is described by a first order rate process, and its rate constant, Kp, is found to correlate very well with the milling power, Pn, determined by the DEM simulation, except for the milling behaviour of αLM at 18 Hz. For the latter, there appears to be an incubation time after which the milling rate increases substantially. The results presented here provide a basis for predicting the milling behaviour of a material systematically based on the fundamental material properties and the machine dynamics without the need for extensive experiment and use of large quantities of materials.  相似文献   

20.
Numerical simulation has been used to show the feasibility of the autothermal cogeneration of synthesis gas and electricity in a solid oxide fuel cell (SOFC) by the electrochemical partial oxidation of CH4. Owing to the large positive entropy change of the CH4 partial oxidation reaction and its low heating value, severe cooling effect is being induced in the SOFC due to heat absorbance by the reaction products. For this reason the autothermal operation of the SOFC reactor cannot be secured. As it is shown this can be overcome by combining the dynamic operation of the SOFC under forced periodic reversal of the flow and the bleeding of a small amount of CH4(<2.5%) in the oxidant stream (cathode). In this respect the catalytic combustion of CH4, on the perovskite cathodic electrode, provides the necessary energy demand so that in combination with flow reversal operation the SOFC is maintained ignited even at inlet temperature as low as 300 K. It is shown that the overall thermodynamic efficiency of the process can by far exceed unity (η>2), thus revealing the unique property of the SOFCs to produce high-quality energy and useful chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号