首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubility of solute in supercritical fluids at different pressures and temperatures is one of the most important parameters necessary for design of any supercritical fluid-based processes. Among different supercritical fluids, carbon dioxide is one of the most widely used solvents due to its useful and green characteristics. In this work, with the assist of supercritical carbon dioxide as the solvent, solubility of cyproheptadine in different temperatures (308–338 K) and pressures (160–400 bar) are measured using static method. The obtained results demonstrated that solubility of cyproheptadine ranged between 3.35 × 10−5 and 3.09 × 10−3 based on mole fraction. A closer examination of measured solubility data show that not only solubility of cyproheptadine increases by increasing pressure but also experiences a cross over pressure about 200 bar. At last, the measured solubility data are correlated using four widely used density based correlations namely Mendez Santiago–Teja (MST), Kumar and Johnston (KJ), Bartle et al., and Chrastil models. The obtained results demonstrated that the best correlative capability was observed for KJ model leads to the average absolute relative deviation percent (AARD %) of 6.3%.  相似文献   

2.
Zi Wang  Qingzhi Dong  Chun Pu Hu 《Polymer》2006,47(22):7670-7679
A series of fluorinated diblock copolymers, consisting of styrene (St)-acrylonitrile (AN) copolymer [poly(St-co-AN)] and poly-2-[(perfluorononenyl)oxy]ethyl methacrylate, with various compositions as well as with different molecular weights were synthesized by atom transfer radical polymerization and characterized. Dispersion polymerization of acrylonitrile in supercritical carbon dioxide (scCO2) at 30 MPa and at 65 °C with this kind of amphiphilic block copolymer as a stabilizer and 2,2′-azobisisobutyronitrile as an initiator was investigated. The experimental results indicated that, in the presence of a small amount of poly(St-co-AN) (5 wt% to AN), spherical particles of polyacrylonitrile (PAN) were prepared with small diameter and narrow polydispersity (dn = 153 nm, dw/dn = 1.12), resulting from the high stabilizing efficiency of this fluorinated block copolymer. Furthermore, the polymerization of AN in scCO2 under different initial pressures especially under low pressure (<14 MPa) was studied. When the polymerization was carried out around the critical pressure of CO2 (7.7-7.8 MPa), the PANs with high molecular weight (Mν ≈ 130,000-194,000) were synthesized at high monomer conversion (>90%) no matter whether the stabilizer was added, compared to those synthesized by dispersion polymerization at 30 MPa. It was also found that the crystallinity of PAN synthesized at 7.7-7.8 MPa was somewhat higher than that synthesized at 30 MPa, while its crystallite size did not change.  相似文献   

3.
This review discusses the retention of organometallic catalysts in continuous flow processes utilizing supercritical carbon dioxide. Due to its innovative properties, supercritical carbon dioxide offers interesting possibilities for process intensification. As a result of safety and cost considerations, processes that use supercritical carbon dioxide are preferably done in continuous flow, as they require a pressure upwards of 74 bar. Many of the reactions that benefit from the application of supercritical carbon dioxide also involve the use of a homogeneous catalyst however, requiring efforts to recycle the catalyst when these are applied in continuous flow. Alternatively, the catalyst may be retained in the reactor by modifying the process or catalyst, such as by catalyst immobilization, membrane separation, or biphasic processing exploiting the properties of supercritical carbon dioxide. Each of these methods is discussed, including their advantages and drawbacks. Also discussed are milli- and micro-flow processes and their possibilities for integrated catalyst retention and handling supercritical carbon dioxide.  相似文献   

4.
Natural cellulosic ramie fiber was acetylated using supercritical carbon dioxide (sc-CO2) as a reaction medium. The structure and properties of the acetylated fibers were investigated using infrared spectroscopy, scanning electron microscopy, X-ray diffraction (including synchrotron microbeam X-ray diffraction), nano-Raman scattering, and a tensile test. The acetylation reaction proceeded without using an organic solvent, and it reached to the core part of the fiber within a short period while maintaining the fiber morphology. The crystallites of cellulose triacetate II and cellulose coexist in the fiber. The acetylated fiber with an average degree of substitution of 1.9 showed high modulus (34.5 GPa) and high strength (763 MPa), which are the highest values for cellulose diacetate so far reported to date.  相似文献   

5.
An experimental study was carried out to determine the fluidization behavior of group A glass bead beds under supercritical conditions. The fluidization state was followed experimentally by pressure drop measurements. Particle fluidization was obtained with carbon dioxide conditions far from the critical point, whereas near this point gas channeling should occur. Particle aggregation can be attributed to increased interparticle forces under these conditions.  相似文献   

6.
超临界二氧化碳(supercritical carbon dioxide, S-CO2)布雷顿循环燃煤发电系统中,炉膛内水冷壁管内S-CO2传热恶化行为,对该系统的设计建造与安全运行具有重要意义。建立S-CO2垂直上升管流动传热过程数值模型,开展S-CO2在垂直上升管流动及传热行为的数值模拟研究,分析了压力、质量流量、热通量和管径以及由物性变化引起的浮升力效应与流动加速效应等因素对传热特性的影响。结果表明:对于垂直上升管内加热条件下的S-CO2,提高其压力与质量流量有利于降低传热恶化程度。而提高热通量与管径则会加剧传热恶化。此外,在S-CO2垂直上升管内,存在明显的浮升力效应,导致发生传热恶化现象,而流动加速效应对传热的影响可以忽略。最后,在内径为4~10 mm、压力为11.07~22.14 MPa、质量流量为0~1200 kg/(m2·s)、热通量为0~200 kW/m2的宽范围工况下,建立深度神经网络模型(DNN),提出了临界热通量预测关联式,其预测精度可提升至94.96%。  相似文献   

7.
The thermal efficiency of a Kenics® KM static mixer used to pre-heat supercritical carbon dioxide, under high pressure conditions, is studied using computational fluid dynamics (CFD). A mesh sensitivity analysis is performed and the CFD model is validated against experimental results on heat transfer with conventional and supercritical fluids. Three turbulent models - standard k-?, RNG k-?, and k-ω - are employed to model the flow and heat transfer under high pressure conditions; the effects of large variations of the physical properties in the pseudo-critical region of the fluid are also studied. The RNG k-? model gives results that are closer to the experimental data than the other two turbulence models. The numerical results show that the static mixer has a thermal efficiency more than three times higher than that of a conventional empty pipe heat exchanger with similar heat transfer area.  相似文献   

8.
Solubility of chlorpheniramine maleate in supercritical carbon dioxide at different temperatures (308–338 K) and pressures (160–400 bar) is measured using static method coupled with gravimetric method. The measured solubility data demonstrated that the solubility of chlorpheniramine maleate was changed between 1.54 × 10−5 and 4.26 × 10−4 based on the mole fraction as the temperature and pressure are changed. The general trend of measured solubility data shows a direct effect of pressure and temperature on the solubility of chlorpheniramine maleate. Finally, the obtained solubilities correlated using four semi-empirical density-based correlations including Mendez Santiago–Teja (MST), Kumar and Johnston (KJ), Bartle et al., and Chrastil models. Although the results of modeling showed that the KJ model leads to the average absolute relative deviation percent (AARD %) of 8.1% which is the lowest AARD %, deviation of other utilized correlations are rather the same.  相似文献   

9.
Cross-linking polymerization of acrylic acid in supercritical carbon dioxide (scCO2) was studied in a batch reactor at 50 °C and 207 bar with either triallyl pentaerythritol ether or tetraallyl pentaerythritol ether as the cross-linker and with 2,2′-azobis(2,4-dimethyl-valeronitrile) as the free radical initiator. All polymers were white, dry, fine powders. Scanning electron microscopy showed that the morphology of the polymer particles was not affected by cross-linking. As the cross-linker concentration was increased, the polymer glass transition temperature first decreased, then increased. Water-soluble and water-insoluble polymers were synthesized by adjusting the cross-linker concentration. Viscosity measurements showed that the polymer thickening effect strongly depended on the degree of cross-linking. Finally, cross-linking polymerization of acrylic acid in scCO2 was carried out in a continuous stirred tank reactor. The use of cross-linker decreased the monomer conversion in this system.  相似文献   

10.
Quang T. Nguyen 《Polymer》2007,48(23):6923-6933
An environmentally benign process, which uses supercritical carbon dioxide (sc-CO2) as a processing aid, is developed in this work to help exfoliate and disperse nanoclay into the polymer matrices. The process relies on rapid expansion of the clay followed by direct injection into the extruder where the mixture is dispersed into the polymer melt. Results from the mechanical properties, rheological studies, and X-ray diffraction (XRD) show that this method represents a significant improvement relative to direct melt blending in single or twin-screw extruders or other methods using sc-CO2. The greatest mechanical property response was a result of directly injecting pre-mixed sc-CO2 and nanoclay into the polypropylene melt during extrusion. It was observed that for concentrations as high as 6.6 wt% (limited only by present process capabilities), XRD peaks were eliminated, suggesting a high degree of exfoliation. Mechanical properties such as modulus increased by as much as 54%. The terminal region of the dynamic mechanical spectrum was similar to that of the base polymer, contrary to what is frequently reported in the literature.  相似文献   

11.
A study on the extrusion of polystyrene was carried out using supercritical carbon dioxide (scCO2) as foaming agent. scCO2 modifies the rheological properties of the material in the barrel of the extruder and acts as a blowing agent during the relaxation at the passage through the die. For experiments, a single-screw extruder was modified to be able to inject scCO2 within the extruded material. The effect of operating parameters on material porosity was studied. Samples were characterized by using water-pycnometry, mercury-porosimetry and scanning electron microscopy. Polystyrene with expansion rate about 15–25% was manufactured. A rapid cooling just downstream the die is important to solidify the structure. The die temperature allows the control of the porosity structure. CO2 concentration shows no significant influence.  相似文献   

12.
This paper describes the methods used to measure flow rate of supercritical and two-phase CO2 through short orifices. Orifices with diameters of 1 millimeter and orifice length-to-diameter ratios of 3.2 and 5 were tested. Flow rates through these orifices were measured over a broad range of inlet conditions in the supercritical region with orifice inlet pressures ranging from 5 MPa to 11 MPa and inlet densities ranging from 86.5 kg/m3 to 630 kg/m3. The data were compared to the isentropic real gas model for expansion of a fluid through a nozzle in order to observe the behavior of the discharge coefficient. For a given orifice inlet condition, the single-phase discharge coefficient was found to be between 0.81 and 0.87 and was independent of the pressure ratio. The discharge coefficient increased as the pressure ratio decreased when two-phase CO2 was present with orifice inlet pressures of 7.7 MPa and 9 MPa. The critical mass flow rate and critical pressure ratio were determined for each test. The raw data from this investigation are available on the internet.This paper describes the methods used to measure flow of supercritical and two-phase CO2 through short orifices. Orifices with diameters of 1 millimeter and orifice length-to-diameter ratios of 3.2 and 5 were tested. Flow rates through these orifices were measured over a broad range of inlet conditions in the supercritical region with orifice inlet pressures ranging from 7.7 MPa to 11 MPa and inlet densities ranging from 111 kg/m3 to 630 kg/m3. The data were compared to the isentropic real gas model for expansion of a fluid through a nozzle in order to observe the behavior of the discharge coefficient. For a given orifice inlet condition, the single-phase discharge coefficient was found to be between 0.81 and 0.87 and was independent of the pressure ratio. The discharge coefficient increased as the pressure ratio decreased when two-phase CO2 was present with orifice inlet pressures of 7.7 MPa and 9 MPa. The critical mass flow rate and critical pressure ratio were determined for each test. The raw data from this investigation are available on the internet.  相似文献   

13.
This study was aimed to measure the solubility of carvedilol in the temperature and pressure ranges of 308⿿338 K and 160 bar to 400 bar, respectively. In this direction, a homemade high pressure visual equilibrium cell was used to measure the solubility of carvedilol using a static method coupled with gravimetric technique. The results revealed that the carvedilol solubility was ranged between 1.12 ÿ 10⿿5 and 5.01 ÿ 10⿿3 based on the mole fraction (mole of carvedilol/mole of carvedilol + mole of CO2) in this study as the temperature and pressure was changed. Finally, the results were correlated using four density-based semi-empirical correlations including Chrastil, Mendez⿿Santiago⿿Teja (MST), Bartle et al., and Kumar and Johnston (K-J) models. Results revealed that although the K-J model leads to the lowest average absolute relative deviation percent (AARD %) of 6.27%, but it could not be considered as the most accurate correlation since all the used four correlations introduces AARD % of about 6⿿10% which may be in the same range as the experimental error.  相似文献   

14.
The solubilities of three active pharmaceutical ingredients (APIs) in supercritical carbon dioxide were measured in this study using a semi-flow apparatus. These APIs are chlormezanone (C11H12ClNO3S), metaxalone (C12H15NO3) and methocarbamol (C11H15NO5) that are all used as skeletal muscle relaxants. The solubility data are reported for three isotherms at 308.2, 318.2 and 328.2 K, with the pressure range from 12 to 24 MPa. Most solubility data are within the range of 10−6 to 10−4 mole fraction for each API. The crossover phenomena were observed from the experimental results for all three systems. These solubility data satisfied the thermodynamic consistency tests. They were then correlated using three semi-empirical models. With the optimally fitted binary interaction parameters, satisfactory correlation agreement is presented for each binary mixture.  相似文献   

15.
许文杰  李敏霞  郭强 《化工学报》2018,69(5):1982-1988
为了得到加热条件下润滑油对超临界二氧化碳换热特性的影响,利用Fluent软件建立CO2/润滑油两相混合物流动传热模型,通过改变润滑油浓度、质量通量、热通量和压力进行换热特性分析。结果表明,润滑油的存在显著削弱超临界二氧化碳的对流换热过程,随着润滑油浓度的增加,对流换热进一步恶化。当油浓度小于1%时,不影响对流传热系数的变化趋势,当油浓度超过3%,温度高于二氧化碳拟临界温度时,传热恶化程度降低。热通量的增加使得对流换热进一步恶化,提高质量通量能有效改善对流换热恶化现象。二氧化碳在润滑油中的溶解度直接影响对流换热过程,提高运行压力可增加二氧化碳在润滑油中的溶解度以降低高润滑油浓度下的传热恶化程度。  相似文献   

16.
Drying of agar gels using supercritical carbon dioxide   总被引:1,自引:0,他引:1  
The use of supercritical carbon dioxide (scCO2) for the removal of water from agar gels has been investigated and compared to air and freeze drying. Experiments were conducted to evaluate how gel formulation (with and without sucrose) and drying conditions (with and without ethanol as a co-solvent, flow rate and depressurisation rate) affected the microstructure of the gels dried using scCO2. X-ray micro-computed tomography (X-ray micro-CT) was used to determine the voidage (% open pore space) of the dried structures, which can be used to indicate the extent of drying-induced structural collapse (in general, the lower the voidage, the greater the collapse). For formulations containing sucrose, which displayed the best structural retention, voidage was found to increase in the order: air drying (4% voidage) < supercritical drying with pure CO2 (48%) < supercritical drying with ethanol-modified CO2 (68%) < freeze drying (76%). The relatively high voidage of samples dried in the presence of ethanol, was due in part to foaming of the gels, hypothesised to result from an interaction between the agar and ethanol, rather than an effect of the supercritical fluid. CO2 flow rate (1 vs. 3 l/min) during supercritical drying and depressurisation rate (0.4 vs. 1.6 MPa/min) had no effect on the dried microstructure.  相似文献   

17.
Reactive extraction using supercritical carbon dioxide (scCO2) and tri-n-octylamine (TOA) was evaluated as a separation method of succinic acid from an aqueous solution. The reactive extraction of succinic acid was performed at varying initial acid concentrations in aqueous solution (0.07–0.45 mol?dm?3), temperature (35–65°C) and pressure (8–16 MPa). The succinic acid separation was conducted in both batch mode and semi-continuous mode. The highest reactive extraction efficiency of approx. 62% was obtained for the process conducted in semi-continuous mode at 35°C and 16 MPa for the initial acid concentrations in aqueous phase of 0.39 mol?dm?3.  相似文献   

18.
Equilibrium solubility of m-nitroaniline and p-nitroaniline in supercritical carbon dioxide (SCCO2) is essential to design the process of SCCO2 extraction and to investigate the effect of each solute on the solubility in SCCO2 ternary system. However, the solubility data is not reported so far. We performed the solubility measurements at the temperatures of 308–328 K and in the pressure range of 11.0–21.0 MPa. The experimental results showed the solubility of m-nitroaniline and p-nitroaniline was enhanced in m-nitroaniline + p-nitroaniline + SCCO2 ternary system. The improvement factor (i), separation factor (μ) and separation efficiency (HE) in the ternary system were defined and calculated, and the best separation result could be obtained at 21.0 MPa and 328 K using SCCO2 extraction, where the separation efficiency was up to 90.9%. Based on the chemical association theory, a new model was developed to calculate the solubility of mixed solutes in SCCO2. The correlation result of the new model was tested by about 500 solubility data from 15 kinds of two solutes mixtures in SCCO2. The correlated result showed that the new model could achieve much better AARD (%) than those of frequently used Sovova and Sovova-T models.  相似文献   

19.
将9种不同结构尺寸的螺线线圈分别置入换热管内进行实验研究,分析了其阻力和传热特性。实验结果表明,在相同的Re下,管内插入螺旋线圈后流体压降和传热系数都有较大提高。通过多元线性回归分析,得到了压降增量和传热系数关联式。由传热性能分析,得到了综合评价因子φ=0.77~1.60,为如何选用性能优越的螺旋线圈提供了参考依据。  相似文献   

20.
Supercritical fluid technology (SFT) as a new technique is very important for clean environment and removal of chemical pollutants. The lack of solubility data of solid solute in certain supercritical fluid is a great obstacle to the successful implementation of SFT. In this work, the solubility of bisphenol A in supercritical carbon dioxide was determined by the dynamic method at the temperatures ranging from 308 to 328 K and pressure range of 11.0–21.0 MPa. The effects of temperature and pressure on solubility were analyzed according to molecular motion theory. The solubility data were correlated using eight different semi-empirical models (Chrastil, Adachi–Lu, Kumar–Johnston, Tang, Sung–Shim, Bartle, Méndez Santiago–Teja and Yu). The comparison between different models was discussed. The thermodynamic properties (total enthalpy ΔH, enthalpy of sublimation ΔsubH and enthalpy of solvation ΔsolvH) of the solid solute were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号