共查询到15条相似文献,搜索用时 78 毫秒
1.
2.
PretixSpan算法解决了类Apriori算法的不足,但产生的投影数据库花费了较多的存储空间及扫描时间.本文基于PretixSpan算法提出PSD算法,舍弃了对非频繁项的存储及对投影序列数小于最小支持数的投影数据库的扫描,减少了不必要的存储空间,提高了查询速度.实验证明,PSD算法比PretixSpan算法具有更好的时空性能. 相似文献
3.
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。 相似文献
4.
一种基于频繁序列树的增量式序列模式挖掘算法 总被引:1,自引:0,他引:1
针对目前现有的增量式序列模式挖掘算法没有充分利用先前的挖掘结果,当数据库更新时,需要对数据库进行重复挖掘的问题。本文提出一种基于频繁序列树的增量式序列模式挖掘算法(ISFST),ISFST采用频繁序列树作为序列存储结构,当数据库发生变化时,ISFST算法分两种情况对频繁序列树进行更新操作,通过遍历频繁序列树得到满足最小支持度的所有序列模式。实验结果表明,ISFST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
5.
《计算机应用与软件》2017,(6)
类Apriori算法在产生频繁模式时需要多次扫描数据库,并且产生大量的候选集;Free Span和Prefix Span等基于投影数据库的算法在产生频繁模式时会产生大量的投影数据库,占用很多内存空间,这些都造成了很大的冗余。针对以往序列挖掘算法存在的不足,提出一种高效的序列挖掘算法——基于位置信息的序列挖掘算法PBSMA(Position-Based Sequence Mining Algorithm)。PBSMA算法通过记录频繁子序列的位置信息来减少对数据库的扫描,利用位置信息逐渐扩大频繁模式的长度,并且借鉴关联矩阵的思想和Prefix Span算法中前缀的概念,深度优先去寻找更长的关键模式。实验结果证明,无论在时间还是空间上,PBSMA算法都比Prefix Span算法更高效。 相似文献
6.
提出了一种新的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,在包含此模式的所有元组中的多维信息中挖掘频繁1-项集,由得到的频繁1-项集开始,循环的由频繁(k-1)-项集(k>1)连接生成频繁k项集,从而得到所有的多维模式。该算法通过扫描不断缩小的频繁(k-1)-项集来生成频繁k项集,减少了扫描投影数据库的次数,因而减少了时间开销,实验表明该算法有较高的挖掘效率。 相似文献
7.
8.
一种挖掘压缩序列模式的有效算法 总被引:1,自引:0,他引:1
从序列数据库中挖掘频繁序列模式是数据挖掘领域的一个中心研究主题,而且该领域已经提出和研究了各种有效的序列模式挖掘算法.由于在挖掘过程中会产生大量的频繁序列模式,最近许多研究者已经不再聚焦于序列模式挖掘算法的效率,而更关注于如何让用户更容易地理解序列模式的结果集.受压缩频繁项集思想的启发,提出了一种CFSP(compressing frequent sequential patterns)算法,其可挖掘出少量有代表性的序列模式来表达全部频繁序列模式的信息,并且清除了大量的冗余序列模式.CFSP是一种two-steps的算法:在第1步,其获得了全部闭序列模式作为有代表性序列模式的候选集,与此同时还得到大多数的有代表性模式;在第2步,该算法只花费了少量的时间去发现剩余的有代表性序列模式.一个采用真实数据集与模拟数据集的实验研究也证明了CFSP算法具有高效性. 相似文献
9.
多维序列模式挖掘是在序列模式挖掘的基础上发展起来的,文章阐述了有关概念,介绍了两种序列模式挖掘算法:GSP算法和PrefixSpan算法,在对两类算法进行比较分析的基础上形成了挖掘多维序列模式的UniSeq算法、Dim-Seq算法和Seq-Dim算法。针对不同维度的模式,各种算法特点不同。 相似文献
10.
11.
闭合序列模式挖掘算法 总被引:3,自引:1,他引:2
提出了一种新的挖掘闭合序列模式的PosD算法,该算法利用位置数据保存数据项的顺序信息,并基于位置数据列表保存数据项的顺序关系提出了两种修剪方法:逆向超模式和相同位置数据。为了确保栅格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下谊算法比CloSpan算法更有效。 相似文献
12.
13.
在序列数据库更新时,现有的增量式序列模式挖掘算法只提到序列的插入操作和序列的扩展操作两种情况,没有针对序列删除操作。提出了一种基于序列树的增量式序列模式更新算法(ISPST)。当数据库更新时,ISPST算法只需要对与删除序列有关的序列构造投影数据库,实现对序列树的更新操作,通过深度优先遍历序列树得到更新后数据库中的所有序列模式。实验结果表明,当支持度发生变化时,ISPST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
14.
序列模式挖掘在网络业务流分析中的应用 总被引:2,自引:0,他引:2
网络业务流分析是为了适应网络优化的需要而出现的分析方法。把一种新的序列模式挖掘算法用于网络业务流分析,对网络业务的模式进行挖掘,性能上优于以往的算法。 相似文献