共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
PretixSpan算法解决了类Apriori算法的不足,但产生的投影数据库花费了较多的存储空间及扫描时间.本文基于PretixSpan算法提出PSD算法,舍弃了对非频繁项的存储及对投影序列数小于最小支持数的投影数据库的扫描,减少了不必要的存储空间,提高了查询速度.实验证明,PSD算法比PretixSpan算法具有更好的时空性能. 相似文献
3.
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。 相似文献
4.
一种基于频繁序列树的增量式序列模式挖掘算法 总被引:1,自引:0,他引:1
针对目前现有的增量式序列模式挖掘算法没有充分利用先前的挖掘结果,当数据库更新时,需要对数据库进行重复挖掘的问题。本文提出一种基于频繁序列树的增量式序列模式挖掘算法(ISFST),ISFST采用频繁序列树作为序列存储结构,当数据库发生变化时,ISFST算法分两种情况对频繁序列树进行更新操作,通过遍历频繁序列树得到满足最小支持度的所有序列模式。实验结果表明,ISFST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
5.
《计算机应用与软件》2017,(6)
类Apriori算法在产生频繁模式时需要多次扫描数据库,并且产生大量的候选集;Free Span和Prefix Span等基于投影数据库的算法在产生频繁模式时会产生大量的投影数据库,占用很多内存空间,这些都造成了很大的冗余。针对以往序列挖掘算法存在的不足,提出一种高效的序列挖掘算法——基于位置信息的序列挖掘算法PBSMA(Position-Based Sequence Mining Algorithm)。PBSMA算法通过记录频繁子序列的位置信息来减少对数据库的扫描,利用位置信息逐渐扩大频繁模式的长度,并且借鉴关联矩阵的思想和Prefix Span算法中前缀的概念,深度优先去寻找更长的关键模式。实验结果证明,无论在时间还是空间上,PBSMA算法都比Prefix Span算法更高效。 相似文献
6.
一种挖掘多维序列模式的有效方法 总被引:1,自引:0,他引:1
提出了一种新的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,在包含此模式的所有元组中的多维信息中挖掘频繁1-项集,由得到的频繁1-项集开始,循环的由频繁(k-1)-项集(k>1)连接生成频繁k项集,从而得到所有的多维模式。该算法通过扫描不断缩小的频繁(k-1)-项集来生成频繁k项集,减少了扫描投影数据库的次数,因而减少了时间开销,实验表明该算法有较高的挖掘效率。 相似文献
7.
8.
从序列数据库中挖掘频繁序列模式是数据挖掘领域的一个中心研究主题,而且该领域已经提出和研究了各种有效的序列模式挖掘算法.由于在挖掘过程中会产生大量的频繁序列模式,最近许多研究者已经不再聚焦于序列模式挖掘算法的效率,而更关注于如何让用户更容易地理解序列模式的结果集.受压缩频繁项集思想的启发,提出了一种CFSP(compressing frequent sequential patterns)算法,其可挖掘出少量有代表性的序列模式来表达全部频繁序列模式的信息,并且清除了大量的冗余序列模式.CFSP是一种two-steps的算法:在第1步,其获得了全部闭序列模式作为有代表性序列模式的候选集,与此同时还得到大多数的有代表性模式;在第2步,该算法只花费了少量的时间去发现剩余的有代表性序列模式.一个采用真实数据集与模拟数据集的实验研究也证明了CFSP算法具有高效性. 相似文献
9.
多维序列模式挖掘是在序列模式挖掘的基础上发展起来的,文章阐述了有关概念,介绍了两种序列模式挖掘算法:GSP算法和PrefixSpan算法,在对两类算法进行比较分析的基础上形成了挖掘多维序列模式的UniSeq算法、Dim-Seq算法和Seq-Dim算法。针对不同维度的模式,各种算法特点不同。 相似文献
10.
11.
12.
基于投影数据集的序列模式增量挖掘算法 总被引:1,自引:0,他引:1
提出一种基于投影数据集的序列增量更新算法Inc_SPM,该算法以PrefixSpan算法为基础。首先利用已有的知识得出频繁1序列,然后生成投影数据集以迭代产生频繁k序列;同时为了控制投影数据集的规模,利用等价投影数据集来改进投影终止条件。 相似文献
13.
提出了一种基于H-tree的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,根据包含此模式的所有元组中的多维信息构造H-tree树,挖掘出相应的多维模式,从而得到了多维序列模式。该算法将多维分析方法与序列模式挖掘算法有效地结合在一起,当维度较高时具有较高的性能。 相似文献
14.
使用序列模式精简基挖掘序列模式 总被引:3,自引:1,他引:3
传统的序列模式挖掘方法在挖掘由短的频繁序列模式组成的数据库时有良好的性能.但在挖掘长的序列模式或支持度阈值很低时,这些方法可能遇到固有的困难,因为产生的频繁序列模式的数量经常太大.在许多情况下,用户可能只需要那些覆盖许多短模式的长模式.此外,在很多应用中,只要得到产生的频繁序列模式的近似支持度就已足够,而不需要它们的精确支持度.介绍了能将误差控制在确定范围内的频繁序列模式精简基的概念,并开发了一个挖掘这种序列模式精简基的算法.实验结果显示计算频繁序列模式精简基是很有前途的. 相似文献
15.
针对数据库减量时不断重复挖掘的问题,在已有闭合序列模式算法PosD*的基础上,提出一种减量挖掘算法 DePosD*。通过移动频繁和非频繁闭合序列集合之间的数据,在原有挖掘结果上直接进行更新,减少挖掘的时间。实验结果证明,在减量过程中该算法的时间效率与PosD*相比有所提高。 相似文献
16.
王涛 《小型微型计算机系统》2008,29(3):503-507
压缩频繁序列模式集是针对频繁序列模式的全集太大这个问题的一种解决方法.为了得到高质量的压缩效果,先对频繁序列模式聚簇,再从每个簇中挑选出有代表性的序列模式,使这些有代表性的序列模式的数目尽可能地少.一个贪婪算法和一个基于候选集的快速算法是压缩频繁序列模式集的有效算法.有代表性的序列模式集合是频繁序列模式的一种子集,实验结果表明它能取得很好的压缩效果. 相似文献