首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究在作者提出的吸附—解吸平衡关系的基础上,建立了一个全新的考虑吸湿效应的多孔介质冷冻干燥数学模型。模型用有限差分法进行求解,并带有一个移动边界,以模拟介电材料辅助的微波冷冻干燥过程。介电材料选用碳化硅(SiC),原料液为脱脂奶。模拟结果表明:介电材料能够有效强化微波冷冻干燥过程。在典型操作条件下,介电材料辅助的微波冷冻干燥所用的时间比普通微波冷冻干燥减少33.1%。当料液中固体含量较低或者固体产品的损耗因子较小时,介电材料对微波加热的效果不明显。基于冰饱和度、温度和水蒸气浓度的分布,本文分析了干燥过程中的传质传热机理,并对干燥速率控制因素进行了讨论。  相似文献   

2.
Wei Wang 《Drying Technology》2013,31(9-11):2147-2168
Abstract

A mathematic model of simultaneous heat and mass transfer for the dielectric material assisted microwave freeze-drying was derived and solved numerically using the finite-deference technique with two moving boundaries. Lactose, a typical pharmaceutical excipient, was used as the representative solid material in the aqueous solution to be freeze-dried. Silicon carbide (SiC) was selected as the dielectric material. Numerical results show that the dielectric material can significantly enhance the microwave freeze-drying process. Under typical operating conditions, the drying time is 43% shorter than that of ordinary microwave freeze-drying. Temperature variations at sublimation fronts were examined in order to determine the appropriate microwave power input. Profiles of temperature, ice saturation, vapor concentration, and pressure during freeze-drying are presented, and rate-controlling mechanisms are discussed.  相似文献   

3.
The dielectric material assisted microwave freeze-drying was investigated theoretically in this study. A coupled heat and mass transfer model was developed considering distributions of the temperature, ice saturation and vapor mass concentration inside the material being dried, as well as the vapor sublimation-desublimation in the frozen region. The effects of temperature and saturation on the effective conductivities were analyzed based on heat and mass flux equations. The model was solved numerically by the variable time-step finite-deference technique with two movable boundaries in an initially unsaturated porous sphere frozen from an aqueous solution of mannitol. The sintered silicon carbide (SiC) was selected as the dielectric material. The results show that dielectric material can significantly enhance microwave freeze-drying process. For case of the dielectric field strength, E = 4000 V/m under typical operating conditions, the drying time is 2081 s, 30.1% shorter and 47.2% longer, respectively, than those for E = 2000V/m and E = 6000 V/m. The heat and mass transfer mechanisms during the drying process were discussed.  相似文献   

4.
吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型   总被引:1,自引:0,他引:1  
杨菁  王维  张朔  宋春芳  唐宇佳 《化工学报》2019,70(9):3307-3319
为了研究吸波材料辅助微波加热对传统冷冻干燥过程的强化作用,建立了多孔介质温度、浓度和电磁场耦合的多相传递模型;以烧结的碳化硅(SiC)为吸波材料、以甘露醇水溶液为待干料液进行了微波冷冻干燥实验,并测定了甘露醇固体的介电特性。模拟和实验结果均表明,吸波材料对初始非饱和多孔物料微波冷冻干燥具有显著的强化作用。初始非饱和样品微波冷冻干燥时间比传统冷冻干燥缩短了18%,比常规饱和样品传统冷冻干燥缩短了30%。模拟结果与实验数据吻合良好。这表明提出的新型干燥方法确实能够实现过程传热传质的同时强化。通过考察样品内部温度、饱和度和电场强度的实时分布,分析了微波冷冻干燥过程的传热传质和电磁波传播与耗散机理。在微波冷冻干燥过程中,初始非饱和样品累计吸收的辐射能和微波能的总和与传统冷冻干燥相当。这说明,该干燥方法只是提高了能量效率,从而大幅缩短了冷冻干燥时间。  相似文献   

5.
《Drying Technology》2013,31(6):995-1017
Abstract

The dielectric material assisted microwave freeze-drying was investigated theoretically in this study. A coupled heat and mass transfer model was developed considering distributions of the temperature, ice saturation and vapor mass concentration inside the material being dried, as well as the vapor sublimation-desublimation in the frozen region. The effects of temperature and saturation on the effective conductivities were analyzed based on heat and mass flux equations. The model was solved numerically by the variable time-step finite-deference technique with two movable boundaries in an initially unsaturated porous sphere frozen from an aqueous solution of mannitol. The sintered silicon carbide (SiC) was selected as the dielectric material. The results show that dielectric material can significantly enhance microwave freeze-drying process. For case of the dielectric field strength, E = 4000 V/m under typical operating conditions, the drying time is 2081 s, 30.1% shorter and 47.2% longer, respectively, than those for E = 2000V/m and E = 6000 V/m. The heat and mass transfer mechanisms during the drying process were discussed.  相似文献   

6.
《Drying Technology》2013,31(1-2):317-340
Abstract:

A simultaneous heat and mass transfer model of the dielectric material–assisted microwave freeze drying was derived in this study considering the vapor sublimation-desublimation in the frozen region. The mathematical model was solved numerically by using the finite-difference technique with two moving boundaries. Silicon carbide (SiC) was selected as the dielectric material, and the skim milk was used as the representative solid material in the aqueous solution to be freeze-dried. The results show that the dielectric material can significantly enhance the microwave freeze drying process. The drying time is greatly reduced compared to cases without the aid of the dielectric material. Profiles of the temperature, ice saturation, vapor concentration, and pressure during freeze drying were presented. Mechanisms of the heat and mass transfer inside the material sphere were analyzed. For an initially unsaturated frozen sample of 16 mm in diameter with a 4-mm-diameter dielectric material core, the drying time is 288.2 min, much shorter than 380.1 min of ordinary microwave freeze drying and 455.0 min of conventional vacuum freeze drying, respectively, under typical operating conditions.  相似文献   

7.
具有预制孔隙的维生素C水溶液微波冷冻干燥   总被引:1,自引:0,他引:1       下载免费PDF全文
张朔  王维  李强强  唐宇佳  董铁有 《化工学报》2019,70(6):2129-2138
设计和组装了一套实验室规模的多功能微波冷冻干燥装置,探究了具有初始孔隙的非饱和物料微波冷冻干燥过程。以维生素C为溶质,采用“软冰”冷冻技术制备了初始饱和与非饱和的冷冻样品。结果表明,软冰冷冻制备的样品能够避免崩塌。在35℃和20 Pa条件下,初始非饱和物料的干燥时间比饱和物料缩短了30.4%。SEM表征显示,非饱和物料具有疏松的球状孔隙结构、连通性好,有利于水蒸气的迁移。采用吸波材料碳化硅辅助的微波加热能够进一步强化冷冻干燥过程。在相同条件下,非饱和物料的微波冷冻干燥(5 W功率)时间比常规冷冻干燥(0 W功率)缩短了28.1%,比饱和物料的常规冷冻干燥缩短了50.0%。吸波材料辅助的初始非饱和物料微波冷冻干燥实现了传热传质的同时强化。  相似文献   

8.
The vacuum freeze-drying (FD) technique used in the food industry can yield a high-quality product, but it is very expensive and requires a long processing time. Besides, the quantity of microorganisms in FD products can often exceed the required standard. As a result, it will be important to develop a new freeze-drying technique. In this article, cabbage was used as a model material, and the microwave field was used as a heat source to supply sublimation heat so that the drying time was shortened greatly. The effect of the microwave sterilization during the drying process was evaluated. Effects of the pressure, thickness of material being dried, and the input microwave power on such indices as drying time and the microorganism number were studied. Compared with the method of ordinary freeze drying, microwave freeze drying (MFD) can greatly reduce the drying time and has a notable sterilization effect.  相似文献   

9.
The vacuum freeze-drying (FD) technique used in the food industry can yield a high-quality product, but it is very expensive and requires a long processing time. Besides, the quantity of microorganisms in FD products can often exceed the required standard. As a result, it will be important to develop a new freeze-drying technique. In this article, cabbage was used as a model material, and the microwave field was used as a heat source to supply sublimation heat so that the drying time was shortened greatly. The effect of the microwave sterilization during the drying process was evaluated. Effects of the pressure, thickness of material being dried, and the input microwave power on such indices as drying time and the microorganism number were studied. Compared with the method of ordinary freeze drying, microwave freeze drying (MFD) can greatly reduce the drying time and has a notable sterilization effect.  相似文献   

10.
针对现有微波冷冻干燥模型中必须依靠实验以确定扩散系数的问题.提出一种构建扩散系的新方法。根据毛细管低压气体输运理论,利用物料本身的细微结构、气体分子平均自由程、气体状态参数和气体物性参数来构建扩散系数,在此基础上建立微波冷冻干燥模型。并结合牛肉的微波冷冻干燥行模型可靠性分析。结果表明,新建模型能够很好地描述微波冷冻干燥过程温度场的变化及其特征.升过程干燥曲线的理论值与实验值之间的相对误差小于10%。  相似文献   

11.
CuCl residue is a hazardous waste from the hydrometallurgical zinc recovery plant. It is very difficult to recycle due to complicated composition, highly corrosive nature, and refractory characteristics. Recently, a new process of microwave drying and roasting was successfully developed to produce both CuO solid and HCl gas products from the CuCl residue. In this paper, the dielectric property of the CuCl residue was measured under different moisture contents. The microwave absorption characteristics of the CuCl residue improved considerably as its moisture content increased. Laboratory-scale drying tests were conducted to evaluate the kinetics of microwave drying and to optimize the operation parameters. The efficiency of microwave drying was further demonstrated in industrial-scale level by microwave dryer developed in in-house. Finally, the drying mechanism of microwave heating of the sticky material was discussed and several measurements were optimized/implemented to intensify the drying process.  相似文献   

12.
结合水对冷冻干燥过程影响的研究   总被引:1,自引:0,他引:1  
本文通过分析三种结合水去除机理下的数学模拟结果,并辅以一定的实验验证进行了结合水对冷冻干燥过程影响的研究。以脱脂牛奶的瓶装冻干为对象,对残余水含量、物料温度、干燥时间、湿含量分布等参数,进行了比较和分析。结果表明,结合水对冷冻干燥过程有重大影响;结合水在升华阶段的解吸过程不能忽略,这一冻干机理对冻干时间与物料干燥层的湿含量分布的预测,以及对冷冻干燥过程的现象描述与规律阐述都极为重要。  相似文献   

13.
Porous frozen material approach to freeze-drying of instant coffee   总被引:2,自引:0,他引:2  
Abstract

Porous frozen material with a certain initial porosity was prepared to explore its influence on freeze-drying experimentally. Soluble coffee was selected as the solute in aqueous solution and liquid nitrogen ice-cream making method was used to prepare the frozen materials. Results showed that freeze-drying can be significantly enhanced using the initially porous frozen material compared with the traditionally solid one. By keeping the same sample mass and moisture content with sole radiation heating, drying time of the porous frozen sample was about one third shorter than that of the solid one under the same tested operating conditions. SEM images of dried products revealed that the porous material had a loose and tenuous structure that was favorable to the transportation of sublimated vapor and the desorption of bound moisture. Appropriately increasing the chamber surface temperature benefited the freeze-drying process and changing the chamber pressure had little effect on the process. Combined radiation and conduction heating can further promote the freeze-drying process and save as much as 36.4% of the drying time. The porous frozen material was found to have a wider range of operating temperature and result in relatively lower residual moisture content.  相似文献   

14.
A model is formulated to describe the drying of a slab of porous material in a combined microwave and convective environment. The model describes the evolution of temperature, pressure, moisture and power distributions that occur during the drying process. The microwave internal heat source is calculated from electromagnetic theory with varying dielectric properties. The inclusion of pressure in the model allows the physical phenomena of “water pumping”, often observed in microwave drying systems, to be accounted for. The influence of sample size; on the drying kinetics 1s examined and found to be an important parameter during the drying process. In particular the effect of resonance on the moisture and temperature profiles and the need for careful consideration of surface mass transfer coefficients are investigated. Simulation results are presented for the combined microwave and convective drying of a homogeneous, isotropic porous material.  相似文献   

15.
COMBINED MICROWAVE AND CONVECTIVE DRYING OF A POROUS MATERIAL   总被引:1,自引:0,他引:1  
A model is formulated to describe the drying of a slab of porous material in a combined microwave and convective environment. The model describes the evolution of temperature, pressure, moisture and power distributions that occur during the drying process. The microwave internal heat source is calculated from electromagnetic theory with varying dielectric properties. The inclusion of pressure in the model allows the physical phenomena of “water pumping”, often observed in microwave drying systems, to be accounted for. The influence of sample size; on the drying kinetics 1s examined and found to be an important parameter during the drying process. In particular the effect of resonance on the moisture and temperature profiles and the need for careful consideration of surface mass transfer coefficients are investigated. Simulation results are presented for the combined microwave and convective drying of a homogeneous, isotropic porous material.  相似文献   

16.
设计、加工和装配了一套实验室规模的微波冷冻干燥装置,旨在实验验证介电材料对微波冷冻干燥液体物料的强化作用。介电材料用烧结的碳化硅(SiC),石英玻璃作为介电材料的参照物;甘露醇,一种典型的药物赋形剂被选为待干溶液中的溶质。实验结果表明使用介电材料可以有效地强化微波冷冻干燥过程。与传统冷冻干燥相比干燥速率大大加快,在试验条件下干燥时间可以节省20%。微波加热逐渐生效并且主要体现在干燥过程的后半部分。当溶液中的固含量很低或者固体物质具有很小的介电损耗因子时,如果不用介电材料,微波加热的效果不明显。  相似文献   

17.
J. F. Nastaj  B. Ambro   ek 《Drying Technology》2005,23(8):1693-1709
A mathematical model of multicomponent vacuum desorption, which occurs in vacuum freeze-drying process, was developed. In freeze-drying porous biomaterials and pharmaceuticals are considered and the vacuum freeze-drying process, especially the moisture desorption in its final stage, is investigated. In this article, the drying with conductive heating and constant contact surface temperature was considered. Pressure drop is taken into account in the model formulation but was neglected in process simulation because of thin material layers undergoing freeze-drying. Model equations were solved by numerical method of lines. Moisture content and temperature distributions within the drying material were predicted from the model as a function of drying time.  相似文献   

18.
黑加仑真空冷冻与微波真空联合干燥工艺研究   总被引:1,自引:0,他引:1  
以黑加仑为原料,对其进行了真空冷冻与微波真空联合干燥工艺的研究。结果表明:先真空冷冻后微波真空干燥(FDMV)的组合方式是可行的;联合干燥合理工艺参数为:微波功率1.34kW。绝对压力11kPa,转换含水率为20%(wb);通过试验验证,联合干燥生产的脱水黑加仑的感官品质和营养成分接近真空冷冻干燥,联合干燥方式对节省干燥时间和降低能耗是有效的。  相似文献   

19.
尹双青  吉民  姚日生 《化工学报》2011,62(11):3236-3241
引言辅酶A(coenzyme A,CoA)是生物体内乙酰化酶的辅酶,也是人体内最重要的酶之一,参与三羧酸循环,起着传递乙酰基的作用,对糖、蛋白质和脂类的代谢起重要作用[1-2]。大量的研究证明辅酶A能促进脂类的正常代谢,抑制过氧化脂质的形成,阻止血小板的凝集,防止胆固醇在血管壁的  相似文献   

20.
初始非饱和多孔物料对冷冻干燥过程的影响   总被引:8,自引:5,他引:3       下载免费PDF全文
于凯  王维  潘艳秋  王威  陈国华 《化工学报》2013,64(9):3110-3116
提出了“初始非饱和多孔物料冷冻干燥”的思想,从实验上验证具有一定初始孔隙的非饱和多孔物料对液体物料冷冻干燥过程的强化作用。设计、加工和组装了一套实验室规模的多功能冷冻干燥装置。采用“液氮制作冰激凌法”,将以甘露醇为主要溶质的液体物料制备成具有不同初始孔隙的冷冻物料。对于相同质量和相同湿含量的非饱和冷冻物料,在相同的操作条件下,进行冷冻干燥实验,并与常规冷冻干燥相比较。结果表明,初始非饱和物料对冷冻干燥过程确实具有显著的强化作用。非饱和冷冻物料(初始饱和度0.28)的干燥时间比常规冷冻物料(初始饱和度1.00)能够节省36.4%。初始饱和度越小,干燥时间越短,干燥产品的含水率越低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号