首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used H215O PET to investigate adult age differences in regional cerebral blood flow (rCBF) during the performance of a visual word identification task. The study participants were 20 healthy, right-handed men: 10 young adults between 18 and 27 years of age, and 10 older adults between 63 and 75 years of age. The word identification task comprised six blocks of test trials representing four task conditions; subjects responded manually. The task conditions varied with regard to whether semantic retrieval was required (e.g., word/nonword discrimination vs simple response to each stimulus) and with regard to the difficulty of visual encoding (e.g., words presented normally vs words with asterisks inserted between adjacent letters). Each subject performed all six trial blocks, concurrently with each of six H215O PET scans. Analyses of quantitative CBF data obtained from the arterial time-activity curve demonstrated a significant age-related decline in global CBF rate. Analyses of the changes in rCBF between task conditions indicated that retrieval of semantic information sufficient to distinguish words from nonwords is mediated by a ventral occipitotemporal cortical pathway. Specific areas within this pathway were also associated with visual encoding processes. Several rCBF activations were significantly greater for young adults than for older adults, indicating an age-related decline in processing efficiency within this ventral occipitotemporal pathway. Although the performance data demonstrated a greater age-related slowing for visual encoding than for semantic retrieval, these age-related performance changes were not associated with corresponding changes in rCBF activation.  相似文献   

2.
While previous functional neuroimaging studies have shown that semantic and episodic memory tasks activate different cortical regions, they never compared regional cerebral blood flow (rCBF) patterns associated with semantic and episodic memory within the same experimental design. In this study, we used H2(15)O PET to study subjects in the course of semantic and episodic memory tasks. rCBF was measured in 9 normal volunteers during a resting baseline condition and two cognitive tasks. In the semantic categorisation task subjects heard a list of concrete words and had to respond to words belonging to the "animals" or "food" category. In the episodic recognition task subjects heard a list of concrete words, half "old", i.e. belonging to the list of the semantic categorisation task, and half "new", i.e. presented for the first time. Subjects had to respond to the "old" words. Both tasks were compared to a resting condition. Statistical analysis was performed with Statistical Parametric Mapping (SPM). Compared to the resting condition, the semantic tasks, activated the superior temporal gyri bilaterally, the left frontal cortex, and right premotor cortex. The episodic tasks activated the left superior temporal gyrus, the frontal cortex bilaterally, and the right inferior parietal cortex. Compared to the episodic memory tasks, the semantic memory tasks activated the superior temporal/insular cortex bilaterally and the right premotor cortex. Compared to the semantic memory tasks, the episodic memory tasks activated the right frontal cortex. These results suggest that cortical networks implicated in semantic and episodic memory show both common and unique regions, with the right prefrontal cortex being the neural correlate specific of episodic remembering.  相似文献   

3.
4.
With the purpose of localising the cerebral cortical areas participating in the discrimination of visual form generated exclusively by texture cues, we measured changes in regional cerebral blood flow (rCBF) with positron emissions tomography (PET) and 15O-butanol as the tracer. The subjects performed two odd-one-out discrimination tasks: a form-from-texture discrimination task (in which a visual form was defined by differences in texture) and its reference task, the discrimination of texture. During task performance, activated fields were present bilaterally in the primary visual cortex and its immediate extrastriate cortex, the right lateral occipital gyrus, bilaterally in the fusiform and superior temporal gyri and posterior parts of the superior parietal lobules, along the medial bank of the right intraparietal sulcus, and in the right supramarginal gyrus. Other fields were found in the cingulate and prefrontal cortex. The findings demonstrate that the discrimination of visual form as defined by texture engages cortical fields that are widely distributed ion the human brain. In the visual cortex, the activated fields are present in both the occipito-temporal and occipito-parietal visual areas. These results suggest that the perception and discrimination of forms in the visual system requires the joint-activation of neuronal populations in the visual cortex.  相似文献   

5.
Information on long-term memory for common odors is discussed. Olfactory parameters (i.e. familiarity, recognition, identification) and their relationship to current memory theory are highlighted. Emphasis is focused on the impact of semantic memory on episodic odor recognition. In contrast to previous research suggesting that verbal/semantic factors play a negligible role in olfactory memory, the present review indicates that episodic odor information is mediated by factors that can be subsumed under the rubric of semantic memory. Specific odor knowledge, such as perceived familiarity and identifiability, is strongly and positively related to episodic odor memory performance. Age-related impairments in various olfactory and cognitive parameters and the potential detrimental effects in episodic odor memory are discussed. Finally, the issue of whether olfactory memory should be conceptualized as an independent process, or whether it shares characteristics with memory for verbal and visual information, is addressed.  相似文献   

6.
Objective: Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Method: Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Results: Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. Conclusion: The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
This study utilised positron emission tomography (PET) to identify the cortical areas involved in verbal initiation and suppression in normal subjects whilst performing a sentence completion test (the Hayling Test). In the first condition (response initiation) subjects were required to complete a sentence from which the last word was omitted, whereas in the second condition (response suppression) subjects were asked to complete a sentence with a word which made no sense in the context of the sentence. Subjects were also required to perform a control task in which they had to read out the last word of given sentences. Compared to the control task, response initiation was associated with left-sided activation of the frontal operculum, inferior frontal gyrus, middle temporal gyrus and the right anterior cingulate gyrus, whereas response suppression was associated with left frontal operculum, inferior frontal gyrus and right anterior cingulate gyrus activation. The difference in activation between the two conditions of the Hayling Test lay in the increased activation of the left middle temporal gyrus and the left inferior frontal gyrus during response initiation.  相似文献   

8.
This H/21?O positron emission tomography (PET) study reports on relative regional cerebral blood flow (rCBF) alterations during fear conditioning in humans. In the PET scanner, subjects viewed a TV screen with either visual white noise or snake videotapes displayed alone, then with electric shocks, followed by final presentations of white noise and snakes. Autonomic nervous system responses confirmed fear conditioning only to snakes. To reveal neural activation during acquisition, while equating sensory stimulation, scans during snakes with shocks and white noise alone were contrasted against white noise with shocks and snakes alone. During acquisition, rCBF increased in the right medial frontal gyrus, supporting a role for the prefrontal cortex in fear conditioning to unmasked evolutionary fearrelevant stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Subjects were required to judge ratios and differences of (a) line length for pairs of lines, (b) area for pairs of squares, and (c) volume for pairs of cubes. Nonmetric analyses of these judgments indicated that all subjects were able to make consistent ratio judgments for all three continua. Many of the subjects, when asked to judge subjective differences, however, performed as if they were judging subjective ratios rather than differences. The data for the few subjects who appeared to be judging subjective differences were not consistent across subjects and conditions. Previous studies of ratio and difference judgments of loudness and heaviness, on the other hand, showed the opposite pattern, in that subjects most often behaved as if they were judging sensory differences when asked to judge sensory ratios. We propose that ratio judgments are more natural to perceptual continua along which stimuli are easily "decomposed" into a number of smaller perceptual units. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
In an effort to examine the functional neuroanatomy of semantic memory, we studied the relative cerebral blood flow of eight healthy young subjects using 15O-water positron emission tomography (PET). Relative to a visual baseline control condition, each of four visual matching-to-sample tasks activated components of the ventral visual processing stream, including the inferior occipital and temporal cortices. Contrasting the task with the highest semantic component, a variation on the Pyramids and Palm Trees paradigm, with a size discrimination task resulted in focal activation in the anterior inferior temporal lobe, focused in the parahippocampal gyrus. There was additional activation in BA47 of the inferior frontal cortex. These data replicate and extend previously reported results using similar paradigms, and are consistent with cognitive neuropsychological models that stress the executive role of BA47 in semantic processing tasks.  相似文献   

11.
To investigate the functional neuroanatomy associated with retrieving semantic and episodic memories, we measured changes in regional cerebral blood flow (rCBF) with positron emission tomography (PET) while subjects generated single word responses to achromatic line drawings of objects. During separate scans, subjects either named each object, retrieved a commonly associated color of each object (semantic condition), or recalled a previously studied uncommon color of each object (episodic condition). Subjects were also scanned while staring at visual noise patterns to provide a low level perceptual baseline. Relative to the low level baseline, all three conditions revealed bilateral activations of posterior regions of the temporal lobes, cerebellum, and left lateralized activations in frontal regions. Retrieving semantic information, as compared to object naming, activated left inferior temporal, left superior parietal, and left frontal cortices. In addition, small regions of right frontal cortex were activated. Retrieving episodic information, as compared to object naming, activated bilateral medial parietal cortex, bilateral retrosplenial cortex, right frontal cortex, thalamus, and cerebellum. Direct comparison of the semantic and episodic conditions revealed bilateral activation in temporal and frontal lobes in the semantic task (left greater than right), and activation in medial parietal cortex, retrosplenial cortex, thalamus, and cerebellum (but not right frontal regions) in the episodic task. These results support the assertion that distinct neural structures mediate semantic and episodic memory retrieval. However, they also raise questions regarding the specific roles of left temporal and right frontal cortices during episodic memory retrieval, in particular.  相似文献   

12.
Tested whether different neurological regions subserved the conceptual and perceptual memory components by using positron emission tomography (PET). Regional cerebral blood flow (RCBF) of 14 Ss (mean age 25 yrs) during 2 conceptual tasks of semantic cued recall and semantic association was compared to a control condition in which Ss made semantic associations to nonstudied words. RCBF during 2 perceptual tasks of word fragment cued recall and word fragment completion was also compared to a word fragment nonstudied control condition. There were clear dissociations in RCBF that reflected differences in brain regions subserving the 2 types of memory processes. Conceptual processing produced more activation in the left frontal and temporal cortex and the lateral aspect of the bilateral inferior parietal lobule. Perceptual memory processing activated the right frontal and temporal cortex and the bilateral posterior areas. (French abstract) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
We studied the relation between performance on direct versus indirect tests of memory for modality. Subjects read or heard words in a mixed list and then were tested by visual perceptual identification (the indirect test) and direct report of items as read, heard, or new. There was a dependent relation between perceptual identification performance and modality judgments, in accord with the hypothesis that subjects base their judgments of modality on relative perceptual fluency. In Experiment 2, we attempted to change the degree of dependence by providing subjects with an alternative basis for modality judgments. Subjects given a mnemonic to encode modality exhibited less dependence between perceptual identification performance and modality judgments than did subjects who encoded modality incidentally. The relation between direct and indirect tests of memory for source characteristics depends on the basis used for each. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
We asked whether the altered cerebral vasculature associated with essential hypertension might dampen or redirect the regional cerebral blood flow (rCBF) response to cognitive work. Relative rCBF was assessed with [(15)O]water positron emission tomography during a working memory task, a memory span task, and two perceptual control tasks. Unmedicated hypertensive patients and control subjects differed in rCBF response during both memory tasks. Hypertensives showed relatively diminished rCBF responses in right hemisphere areas combined with compensatory activation of homologous areas in the left cerebral cortex. Essential hypertension appears to selectively influence the circulatory reserve of portions of cerebral cortex and secondarily induce recruitment of other cortical areas to process certain tasks.  相似文献   

15.
Auditory and visual word processing studied with fMRI   总被引:1,自引:0,他引:1  
Brain activations associated with semantic processing of visual and auditory words were investigated using functional magnetic resonance imaging (fMRI). For each form of word presentation, subjects performed two tasks: one semantic, and one nonsemantic. The semantic task was identical for both auditory and visual presentation: single words were presented and subjects determined whether the word was concrete or abstract. In the nonsemantic task for auditory words, subjects determined whether the word had one syllable or multiple syllables. In the nonsemantic task for visual words, subjects determined whether the word was presented in lower case or upper case. There was considerable overlap in where auditory and visual word semantic processing occurred. Visual and auditory semantic tasks both activated the left inferior frontal (BA 45), bilateral anterior prefrontal (BA 10, 46), and left premotor regions (BA 6) and anterior SMA (BA 6, 8). Left posterior temporal (middle temporal and fusiform gyrus) and predominantly right-sided cerebellar activations were observed during the auditory semantic task but were not above threshold during visual word presentation. The data, when averaged across subjects, did not show obligatory activation of left inferior frontal and temporal language areas during nonsemantic word tasks. Individual subjects showed differences in the activation of the inferior frontal region while performing the same task, even though they showed similar response latency and accuracy.  相似文献   

16.
This study examined memory for common odors and odor names that were encoded with visual, verbal, and olfactory elaborations. In the first experiment, subjects elaborated olfactory stimuli by processing a picture of the odor's source, a name for the odor, or both. Two control groups were also included: One group was presented only with the odors, and another group was presented only with odor names. One week later, all subjects were given both a free recall test of odor names and an olfactory recognition test. In general, the elaboration groups outperformed the control groups, with the visual and verbal elaboration group demonstrating the best performance. In a second experiment, olfactory imaginal encoding of odor names was compared with visual imaginal encoding of the same names to measure the relative efficacy of same versus different modality encoding on later stimulus recognition. The results showed that olfactory imaginal encoding aided later recognition of odors, and visual imaginal encoding aided later picture recognition. It is suggested that different modalities contribute unique and mnemonically independent information to episodic memory performance. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Four experiments were designed to examine the processing of time in human memory. These experiments introduce a new way of testing memory for relative temporal duration that uses a list with uneven temporal spacing between items. In this irregular list technique, people are excused from remembering the items themselves and from remembering their relative positions within the list but must judge which of two adjacent interitem intervals had been longer. Although performance was good in this task, it was comparable for vocalized and silent visual presentation. This finding directly contradicts the hypothesis that temporal coding is better in the auditory modality than in the visual modality. The second experiment replicated this result for word lists under conditions in which people were ignorant, until after list presentation, about whether they were to recall the items or to make temporal judgments. The third experiment investigated the effect of filling, with distraction, the interitem intervals in irregularly spaced lists. In the final experiment, we adapted the irregular list technique to examine long-term or semantic memory. We conclude that memory for the genuinely temporal properties of learned experiences can and should be separated from their sequential ordering. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The clinical, electrophysiological and haemodynamic effects of precentral gyrus stimulation (PGS) as a treatment of refractory post-stroke pain were studied in 2 patients. The first patient had a right hemibody pain secondary to a left parietal infarct sparing the thalamus, while the second patient had left lower limb pain developed after a right mesencephalic infarct. In both cases, spontaneous pain was associated with hyperpathia, allodynia and hypoaesthesia in the painful territory involving both lemniscal and extra-lemniscal sensory modalities in patient 1, extra-lemniscal sensory modality only in patient 2. Both patients were treated with electrical PGS by means of a 4-pole electrode, the central sulcus being per-operatively located using the phase-reversal of the N20 wave of somatosensory evoked potentials. No sensory side effect, abnormal movement or epileptic seizure were observed during PGS. The analgesic effects were somatotopically distributed according to the localization of electrode on motor cortex. A satisfactory long-lasting pain control (60-70% on visual analog scale) as well as attenuation of nociceptive reflexes were obtained during PGS in the first patient. Pain relief was less marked and only transient (2 months) in patient 2, in spite of a similar operative procedure. In this patient, in whom PGS eventually evoked painful dysethesiae, no attenuation of nociceptive RIII reflex could be evidenced during PGS. Cerebral blood flow (CBF) was studied using emission tomography (PET) with O-labeled water. The sites of CBF increase during PGS were the same in both patients, namely the thalamus ipsilateral to PGS, cingulate gyrus, orbito-frontal cortex and brainstem. CBF increase in brainstem structures was greater and lasted longer in patient 1 while patient 2 showed a greater CBF increase in orbito-frontal and cingular regions. Our results suggest that PGS-induced analgesia is somatotopically mediated and does not require the integrity of somatosensory cortex and lemniscal system. PGS analgesic efficacy may be mainly related to increased synaptic activity in the thalamus and brainstem while changes in cingulate gyrus and orbito-frontal cortex may be rather related to attentional and/or emotional processes. The inhibitory control on pain would involve thalamic and/or brainstem relays on descending pathways down to the spinal cord segments, leading to a depression of nociceptive reflexes. Painful dysesthesiae during stimulation have to be distinguished from other innocuous sensory side effects, since they may compromise PGS efficacy.  相似文献   

19.
The neuromodulator acetylcholine is thought to modulate information processing in the olfactory system. The authors used 192 IgG-saporin, a lesioning agent selective for basal forebrain cholinergic neurons, to determine whether selective lesions of cholinergic neurons projecting to the olfactory bulb and cortex affect odor perception in rats. Lesioned and sham-operated rats were tested in an olfactory generalization paradigm with sets of chemically related odorants (n-aliphatic aldehydes, acids, and alcohols). Lesioned rats generalized more between chemically similar odorants but did not differ from controls in their response to chemically unrelated odorants or in acquisition of the conditioned odor. Results show that cholinergic inputs to the olfactory system influence perceptual qualities of odorants and confirm predictions made by computational models of this system. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Subjects participated in perceptual and imagery tasks while their brains were scanned using positron emission tomography. In the perceptual conditions, subjects judged whether names were appropriate for pictures. In one condition, the objects were pictured from canonical perspectives and could be recognized at first glance; in the other, the objects were pictured from noncanonical perspectives and were not immediately recognizable. In this second condition, we assume that top-down processing is used to evaluate the names. In the imagery conditions, subjects saw a grid with a single X mark; a lowercase letter was presented before the grid. In the baseline condition, they simply responded when they saw the stimulus, whereas in the imagery condition they visualized the corresponding block letter in the grid and decided whether it would have covered the X if it were physically present. Fourteen areas were activated in common by both tasks, only 1 of which may not be involved in visual processing (the precentral gyrus); in addition, 2 were activated in perception but not imagery, and 5 were activated in imagery but not perception. Thus, two-thirds of the activated areas were activated in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号