首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work, microfibrillar composites (MFCs) consisting of polypropylene (PP) and poly(ethylene terephthalate) (PET) were successfully produced by melt extrusion and cold stretching. The resulting filaments were then printed using fused filament fabrication. The morphological results demonstrate that the highly oriented PET fibrils after stretching are still well preserved in the printed components. Since the printing process defines the alignment of the fibrils in the final component the fibers can be perfectly adapted to the load paths. Comparative analyses of the mechanical properties reveal that the PET fibrils act as an effective reinforcement in the 3D printed components, resulting in the superior mechanical performance of the PP/PET MFCs compared to a PP/PET blend and a neat PP. Due to the combination of material and innovative processing, the study opens up a new way of using the morphology-based enormous potential of polymer fibers for lightweight, cost-effective and recyclable full polymer solutions in compact components.  相似文献   

2.
In this work, metal-ceramic composite parts based on aluminum and alumina were manufactured in a two-stage process. First, silica was printed using a vat photopolymerization technique, followed by a curing and sintering stage, which resulted in ceramic precursors. Subsequently, these samples were subjected to a metal infiltration process to form interpenetrating metal-ceramic composites (IPCs). These composites have attracted considerable attention in the aerospace and defense sector due to the ductility associated to the metal phase and the strength offered by the ceramics. A novel application with utility includes composite tooling which requires a low coefficient of thermal expansion (CTE) for high temperatures. The investigated specimens were tested for surface quality and shrinkage, followed by a mechanical characterization. It was recorded that the samples presented a 12%–18% of shrinkage after the sintering process. The mechanical testing showed that the hardness, compression, and flexural strength of the composites were superior to the printed and sintered ceramics. A thermal analysis on the composite showed that its CTE is more than two times lower than the common composite tooling materials. It is expected that the present work can provide the foundations for further studies on these systems in the refractory, automotive, and armor-based fields.  相似文献   

3.
The demand for light-weight, high-performance polymeric foam material, and part soars to meet the requirements of the national economy and the high-tech industries. Currently, foaming technologies are inadequate to fabricate these advanced materials. In this study, polyetherimide/carbon fiber (PEI/CF) foam was prepared by pressure-induced batch foaming technology with the supercritical CO2 (scCO2) and ethanol (EtOH) as the physical foaming agent and co-foaming agent, respectively. The presence of EtOH was verified to enhance the solubility of scCO2 and increase the interaction energies between PEI molecular chain and CO2/EtOH foaming agent, the expansion ratio of PEI pellets, as a result, was effectively improved from 1.3 to 7.5. Using the stainless mold-assisted sinter molding, numerous PEI or PEI/CF pellets was simultaneously foamed and squeezed into three-dimensional (3D) geometry shape. The cell morphology tests indicated that the CF, served as the nucleating agent, cannot only facilitate the formation of denser microcellular structure, but also improve the mechanical performance of the final foam product. As a model system, PEI/CF foam product with a density of 320 kg/m3 was successfully obtained, the compression and tensile strength of which were 11.6 and 9.7 MPa, respectively, as proved by the mechanical performance measurements.  相似文献   

4.
Electrically conductive polymer composites for bipolar plate were fabricated by two‐step compression molding technique. Raw materials consisted of natural graphite flakes (G), expanded graphite (EG), carbon black (CB), and phenol resin (PF). The G/EG/CB/PF composites were first compressed at a temperature lower than curing point (100°C) and then cured at a high temperature above curing point (150°C) and high pressure (10 MPa). Results showed that G and EG are oriented in the direction parallel to the composite plate surface. CB is dispersed not only in the phenol resin matrix but also in the packing and porous space of G and EG. The addition of EG and CB significantly increases number of the electrical channels and thus enhances the electrical conductivity of the composite. Under optimal conditions, electrical conductivity and flexural strength of the composite were 2.80 × 104 S/m and 55 MPa, respectively, suggesting that the dipolar plates prepared by two‐step compression molding technique are adequate to meet the requirement of proton exchange membrane fuel cells. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2296–2302, 2013  相似文献   

5.
采用真空辅助树脂传递模塑(VARTM)工艺制作了玻璃纤维增强不饱和聚酯复合材料层合板,对其进行了拉伸、弯曲、冲击性能测试,并对铺层取向与玻璃纤维复合材料层合板力学性能的影响关系进行了实验研究。实验结果表明,0°取向玻纤增强复合材料在单一方向上的力学性能最佳,±θ取向比θ取向玻纤增强复合材料有更好的力学性能;θ单向铺层复合材料在外载荷作用下发生破坏,其断口破坏的角度与铺层角度一致,而在±θ多向铺层复合材料的断口形貌更复杂。通过合理的铺层设计可获得满足工程需要的复合材料制品。  相似文献   

6.
分析了环状对苯二甲酸丁二醇酯(CBT)-CBT100和CBT160两种树脂的反应特性,研究了三种锡类催化剂对CBT100树脂低粘度适用期和高温反应时间的影响,并对比了采用树脂粉末熔融浸渍成型和高温真空辅助灌注成型(VARTM)方法制备的玻璃纤维增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料的力学性能。研究结果表明,CBT160树脂高温反应速度较快,适合树脂粉末熔融浸渍相类似的成型工艺。CBT100树脂通过外加一定量的单丁基三异辛酸锡或二丁基二月桂酸锡催化剂,可以使其具有合适的适用期和反应聚合时间,适宜用于VARTM过程。含单丁基三异辛酸锡的CBT100树脂通过高温VARTM方法制备的玻纤增强PCBT复合材料的综合力学性能较好,略高于采用CBT160树脂用树脂粉末熔融浸渍成型方法制备的复合材料的力学性能。  相似文献   

7.
Natural rubber–epoxidized natural rubber–silica composites were prepared by the wet masterbatch technique and the traditional dry mixing method. Performances of the composites based on different preparation methods were investigated with a moving die rheometer, an electronic universal testing machine, a dynamic mechanical analyzer, a nuclear magnetic resonance crosslink density analyzer, a rubber processing analyzer (RPA), a scanning electron microscope (SEM), and a transmission electron microscope (TEM). The RPA, SEM, and TEM analyses indicated that silica has better dispersion, lower filler–filler interaction, and better filler–rubber interaction in compounds based on the wet masterbatch technique, leading to improvements in mechanical strength and the dynamic mechanical and compression properties of the composites. It also indicates that composites prepared by the wet masterbatch technique have shorter scorch time, faster curing velocity, and higher crosslink density. The composites prepared by the wet materbatch technique also have lower rolling resistance, which is an important property for their use as a green material for the tire industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43571.  相似文献   

8.
The primary purpose of the study is to investigate the anisotropic behavior of different noncrimp stitched fabric (NCF) reinforced polyester composites. Carbon fiber composite laminates were manufactured by vacuum infusion of polyester resin into two commonly used advanced noncrimp stitched carbon fabric types, unidirectional and biaxial carbon fabric. The effects of geometric variables on composite structural integrity and strength were illustrated. Hence, tensile and three‐point bending flexural tests were conducted up to failure on specimens strengthened with different layouts of fibrous plies in NCF. In this article an important practical problem in fibrous composites, interlaminar shear strength as measured in short beam shear tests, is discussed. The fabric composites were tested in three directions: at 0°, 45°, and 90°. Extensive photomicrographs of multilayered composites resulting from a variety of uniaxial loading conditions were presented. It was observed that broken fibers recede within the matrix in composites with weak interfacial bond. Another aim of the present work was to investigate the interaction between carbon fiber and polyester matrix. The experiments, in conjunction with scanning electron photomicrographs of fractured surfaces of composites, were interpreted in an attempt to explain the instability of polyester‐resin–carbon‐fiber interfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4554–4564, 2006  相似文献   

9.
Plant fibers are of increasing interest for use in composite materials. They are renewable resources and waste management is easier than with glass fibers. In the present study, longitudinal stiffness and strength as well as morphology of unidirectional sisal–epoxy composites manufactured by resin transfer molding (RTM) were studied. Horseshoe‐shaped sisal fiber bundles (technical fibers) were nonuniformly distributed in the matrix. In contrast to many wood composites, lumen was not filled by polymer matrix. Technical sisal fibers showed higher effective modulus when included in the composite material than in the technical fiber test (40 GPa as compared with 24 GPa). In contrast, the effective technical fiber strength in the composites was estimated to be around 400 MPa in comparison with a measured technical fiber tensile strength of 550 MPa. Reasons for these phenomena are discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2358–2365, 2002  相似文献   

10.
Polyester‐ and epoxy‐based composites containing glass and carbon fibers were manufactured using a vacuum‐assisted resin transfer molding (VARTM) process. Fourier transform infrared (FTIR) spectroscopy analyses were conducted to determine the interaction between fibers and matrix material. The results indicate that strong interaction was observed between carbon fiber and epoxy resin. However, weak interactions between remaining fiber‐matrix occur. Scanning electron microscopy (SEM) analysis was also performed to take some information about strength of interaction between fibers and matrix material. From SEM micrographs, it is concluded that the findings in SEM analysis support to that obtained in FTIR analysis. Another aim of the present work was to investigate the influence of matrix on composite properties. Hence, the strengths of composites having same reinforcement but different matrix systems in axial tension and transverse tension were compared. Short beam shear test has been conducted to characterize the interfacial strength in the composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Conductive polymer composites (CPCs) have generated significant academic and industrial interest due to the wide applications in anti-static materials, electromagnetic interface, sensor, and conductors. Nonetheless, the CPCs fabricated by conventional melt-mixing applied to the scalable production generally have a very high percolation threshold, which always suffer from the various draw backs such as, high melt viscosities, low economic affordability, inferior mechanical properties, and solution compounding by reducing the viscosity improves the uniformity of nano-particles. This work aims at building a segregated structure in polyethylene to enhance mechanical properties and electrical conductivity, by taking advantage of the solution compounding and melt-blending methods. Based on the segregated structure, the composites showed the enhanced mechanical properties, thermal stabilities and antistatic properties with a low percolation threshold. In addition, the composite mechanism between graphene oxide and polyethylene and the structure-performance relationship of the CPCs were elucidated and explored by SEM, TEM, and FTIR.  相似文献   

12.
The results of this work relate to the use of co‐extrusion technology in the preparation of monocomposite pellets. The low‐melting polypropylene copolymer was used as a matrix material. The high strength polypropylene fibers were used as a fibrous reinforcement. Research confirms the possibility to produce the pellets with fibrous structure. The prepared composite material in the form of pellets was processed and shaped using the injection molding technology. Obtained samples were subjected to mechanical testing in the static tensile test and dynamic mechanical analysis. Research complements microscopic observation of scanning electron microscopy. The measurement results confirm the reinforcing effect of the fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41180.  相似文献   

13.
14.
The solution/precipitation method was used for the preparation of polyethylene (PE)/cellulosic fibers composites. Blends of modified linear low density PE [linear low density PE‐grafted maleic anhydride (LLDPE‐g‐MAH)] with low density PE (LDPE) were used as matrices for the aforementioned composites. Blends of LDPE with a copolymer of LDPE and acrylic acid (AA)/n‐butyl acrylate (n‐BA) [(AA/n‐BA)–LDPE] were also studied for the same purpose. The reinforcing effect of cellulosic fibers in terms of tensile strength is more enhanced when mixtures of the modified polar polymer with pure PE were used as matrices, as compared with that corresponding to matrices consisting of modified PE alone. Regarding the Izod impact strength, composites of LLDPE‐g‐MAH presented the best performance with an improvement of 135% in comparison with specimens consisting of LDPE matrix, whereas composites of (AA/n‐BA)‐LDPE matrix showed a modest improvement of their impact resistance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
To strengthen the interfacial interactions between waste‐printed circuit board (WPCB) nonmetals and unsaturated polyester resin (UPE) and achieve a high performance in UPE composites, a novel type of polyurethane prepolymer (pre‐PU) with dual functions was prepared by the reaction of isophorone diisocyanate with poly(ethylene glycol). We found that pre‐PU was chemically bonded to the surface of the WPCB nonmetals, and a stronger interaction between the WPCB nonmetals and UPE matrix was formed. The mechanical properties and thermal stability of the UPE/pre‐PU–WPCB nonmetal composites showed remarkable improvements compared with those of the UPE/WPCB nonmetals composites, in particular, the impact toughness, which increased threefold. We envision that this promising modification method will not only open up new opportunities for the preparation of high‐performance plastic composites but also provide a guarantee for the practical industrial application of WPCB nonmetals. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45129.  相似文献   

16.
The main objective of this work was to investigate the effect of reinforcements at different scales on the mechanical properties of natural fiber-reinforced composites. Pure jute and interlaminar hybrid jute/glass fiber-reinforced polymer composites were fabricated. Different types of fillers in two weight fractions (1 and 3 wt. %) were used as second reinforcements in the hybrid jute/glass composites. Tensile, flexural, and impact tests were performed. It was found that the macroscale inter-play hybridization significantly improved the mechanical properties of the pure jute fiber based composites. When the fillers are used as second hybridization, the modified composites presented higher mechanical properties when compared to pure jute composites. However, the effect of fillers on the mechanical properties of the hybrid composites presented various trends due to the interaction between several factors (i.e., particle scale, content, and nature), which cannot always be separated. Increasing the synthetic filler content improved the tensile properties of the filled hybrid composites, while increasing the natural filler content worsen the tensile properties. The flexural strength of the multiscale hybrid composites was improved, while the impact properties were negatively affected.  相似文献   

17.
以亚麻针刺非织造布为增强基,采用真空辅助树脂传递模塑法制作复合材料,研究了不同针刺工艺对亚麻非织造布及其复合材料力学性能的影响。通过扫描电镜和体式显微镜分别对复合材料的拉伸断面和弯曲断痕进行了观察,并分析了它们的破坏模式。结果表明:采用平行铺网或交叉铺网制成的660.4g/m^2的针刺毡,均可在一定的针刺密度下,使其复合板的拉伸强度、弯曲强度达到国内天然增强材料及普通工程塑料的水平。  相似文献   

18.
The time effect of ultrasonication was investigated for dispersing carbon nanofibers (CNFs) into a polycarbonate (PC) matrix on the mechanical properties of thus‐produced composites. The effects of CNF surface modification by plasma treatment and the CNF concentration in composites on their mechanical properties were also explored. The plasma coating was characterized by HRTEM and FT‐IR. Furthermore, the plasma polymerization (10 w) treatment on the CNF enhanced the CNF dispersion in the polymer matrix. The mechanical properties of the CNF–PC composites varied with the dispersion time, at first increasing to a maximum value and then dropping down. After a long ultrasonic treatment (24 h), the properties increased again. At a high concentration, the CNF‐PC suspension became difficult to disperse. Additionally, the possible mechanisms for these behaviors are simply proposed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3792–3797, 2007  相似文献   

19.
Carbon nanotube (CNT)/styrene–ethylene–butylene–styrene (SEBS) composites were prepared via a sequential process of (electrostatic adsorption assisted dispersion)‐plus‐(melt mixing). It was found that CNTs were uniformly embedded in SEBS matrix and a low percolation threshold was achieved at the CNT concentration of 0.186 vol %. According to thermal gravimetric analysis, the temperatures of 20% and 50% weight loss were improved from 316°C and 352°C of pure SEBS to 439°C and 463°C of the 3 wt % CNT/SEBS composites, respectively. Meanwhile, the tensile strength and elastic modulus were improved by about 75% and 181.2% from 24 and 1.6 MPa of pure SEBS to 42 and 4.5 MPa of the 3 wt % CNT/SEBS composite based on the tensile tests, respectively. Importantly, this simple and low‐cost method shows the potential for the preparation of CNT/polymer composite materials with enhanced electrical, mechanical properties, and thermal stability for industrial applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40227.  相似文献   

20.
The effect of basalt fibre sizing on the mechanical and interphase properties of fibre‐reinforced composites was studied. Two different chemical preparations of the fibre surface (PBT‐compliant and PP‐compliant) were used. The polymer matrix was prepared from polypropylene/poly(butylene terephthalate) (PP/PBT) immiscible polymer blend and the effect of different compatibilizers on the composite properties was evaluated. SEM hints at improved fibre adhesion to the polymer matrix when a PP‐compliant sizing is applied. SEM also reveals improved compatibilization effects when block copolymer instead of multiblock copolymer is used for the PP/PBT blend preparation. The pull‐out test was applied to quantitatively evaluate the interface adhesion between the fibres and matrices. It showed a high value of the interfacial shear strength between basalt fibres modified with PP‐compliant sizing and polymer blend compatibilized by block copolymer, thus confirming good adhesion. One possible explanation of such good mechanical properties can be related to the chemical interactions between functional groups, mainly maleic anhydride on basalt fibres and the polyolefin component (PP) of the polymer matrix. © 2017 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号