首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hyperbranched charring agent (CT) was synthesized by triglycidyl isocyanurate and diethylenetriamine in water, and a new intumescent flame retardant (IFR) system was formed by ammonium polyphosphate (APP) and CT. The different formula and synergistic system between IFR and aluminum hypophosphite (AHP) have been studied through limit oxygen index (LOI), UL‐94, cone calorimetry test and TGA. It was found that the LOI for poly(lactic acid) (PLA) with 30 APP/CT (4:1) and 20 wt % IFR/AHP (3:1) were 41.2% and 43.5%, respectively, and the both could achieve UL‐94V‐0 rating with no melt dripping. The heat release rate (HRR), maximum HRR value and average mass loss rate of PLA could be dramatically decreased by combination of IFR and AHP while the thermal stability was greatly enhanced. The study of morphology and structure of char illustrated that more intumescent and compact char layer with good intensity was formed during the degradation of IFR/AHP, which resulting to better flame retardancy and anti‐dripping than IFR or AHP alone. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46359.  相似文献   

2.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

3.
A novel flame retardant, tetra(5,5‐dimethyl‐1,3‐ dioxaphosphorinanyl‐2‐oxy) neopentane (DOPNP), was synthesized successfully, and its structure was characterized by FT‐IR, 1H NMR, and 31P NMR. The thermogravimetric analysis (TGA) results demonstrate that DOPNP showed a good char‐forming ability. Its initial decomposition temperature was 236.4°C based on 1% mass loss, and its char residue was 41.2 wt % at 600°C, and 22.9 wt % at 800°C, respectively. The flame retardancy and thermal degradation behavior of novel intumescent flame‐retardant polypropylene (IFR‐PP) composites containing DOPNP were investigated using limiting oxygen index (LOI), UL‐94 test, TGA, cone calorimeter (CONE) test, and scanning electron microscopy (SEM). The results demonstrate that DOPNP effectively raised LOI value of IFR‐PP. When the loading of IFR was 30 wt %, LOI of IFR‐PP reached 31.3%, and it passed UL‐94 V‐0. TGA results show that DOPNP made the thermal decomposition of IFR‐PP take place in advance; reduced the thermal decomposition rate and raised the residual char amount. CONE results show that DOPNP could effectively decrease the heat release rate peak of IFR‐PP. A continuous and compact char layer observed from the SEM further proved the flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

4.
硼酸锌在膨胀型无卤阻燃ABS中的协同作用   总被引:1,自引:0,他引:1  
采用熔融共混法制备了丙烯腈-丁二烯-苯乙烯共聚物(ABS)/膨胀型阻燃剂(IFR)/硼酸锌(ZB)无卤阻燃复合材料。利用热重分析仪、氧指数测定仪、扫描电子显微镜等研究了ZB对复合材料热失重行为、阻燃性能、微观结构及力学、加工性能的影响。较低含量的ZB与IFR存在较好的阻燃协同作用,且ZB可促进IFR成炭,使ABS/IFR复合材料的氧指数及其残炭量分别由未加ZB时的27.4%、21.29%提高到30.1%和23.05%。ZB的加入能够提高ABS/IFR复合材料的弯曲性能和加工性能,但对复合材料的冲击、拉伸性能产生了不利影响。  相似文献   

5.
Synergistic flame‐retardant effect of halloysite nanotubes (HNTs) on an intumescent flame retardant (IFR) in low‐density polyethylene (LDPE) was investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, and scanning electronic microscopy (SEM). The results of LOI and UL‐94 tests indicated that the addition of HNTs could dramatically increase the LOI value of LDPE/IFR in the case that the mass ratio of HNTs to IFR was 2/28 at 30 wt % of total flame retardant. Moreover, in this case the prepared samples could pass the V‐0 rating in UL‐94 tests. CC tests results showed that, for LDPE/IFR, both the heat release rate and the total heat release significantly decreased because of the incorporation of 2 wt % of HNTs. SEM observations directly approved that HNTs could promote the formation of more continuous and compact intumescent char layer in LDPE/IFR. TGA results demonstrated that the residue of LDPE/IFR containing 2 wt % of HNTs was obviously more than that of LDPE/IFR at the same total flame retardant of 30 wt % at 700°C under an air atmosphere, and its maximum decomposing rate was also lower than that of LDPE/IFR, suggesting that HNTs facilitated the charring of LDPE/IFR and its thermal stability at high temperature in this case. Both TGA and SEM results interpreted the mechanism on the synergistic effect of HNTs on IFR in LDPE, which is that the migration of HNTs to the surface during the combustion process led to the formation of a more compact barrier, resulting in the promotion of flame retardancy of LDPE/IFR. In addition, the mechanical properties of LDPE/IFR/HNTs systems were studied, the results showed that the addition of 0.5–2 wt % of HNTs could increase the tensile strength and the elongation at break of LDPE/IFR simultaneously. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40065.  相似文献   

6.
Abstract

The synergistic effects of Fe organic modified montmorillonite (Fe-OMMT) with layered double hydroxides (LDHs) in ethylene vinyl acetate copolymer/LDH (EVA/LDH) composites have been studied using thermal analysis [thermogravimetric analysis (TGA)], limiting oxygen index (LOI), UL-94 test and cone calorimeter test (CCT). The results showed that the addition of a given amount of Fe-OMMT apparently increased the LOI value and the rating in the UL-94 test. The results from the LOI and UL-94 tests show that Fe-OMMT can act as flame retardant synergistic agents in EVA/LDH composites. The CCT data indicated that the addition of Fe-OMMT in the EVA/LDH system can greatly reduce the heat release rate. The TGA data show that Fe-OMMT, as an excellent flame retardant synergist of LDH, cannot increase the thermal degradation temperature and the charred residues.  相似文献   

7.
Abstract

Cerium(IV) phosphate [CeP(IV)] was synthesised by hydrothermal synthesis and used as a synergistic agent on the flame retardancy of styrene butadiene rubber (SBR)/intumescent flame retardant (IFR) system. The IFR system mainly consisted of ammonium polyphosphate and pentaerythritol. Limiting oxygen index, UL-94 test, thermogravimetric analysis, cone calorimeter, scanning electron microscopy and microscale combustion calorimeter were used to evaluate the synergistic effects of CeP(IV). The addition of CeP(IV) to SBR/IFR composites leads to the improvement in UL-94 values of the SBR/IFR/CeP(IV) composites, and the peak of heat release rate decreases with increasing CeP(IV) content. SEM was used to analyse the morphological structure of the residue chars formed from the SBR/IFR systems with and without CeP(IV). A possible mechanism for catalysing carbonisation was discussed. The experimental results indicated that there existed a synergistic effect between CeP(IV) and IFR for the flame retardancy of SBR.  相似文献   

8.
The effect of percolation and catalysis of bamboo‐based active carbon (BAC) on the thermal degradation and flame retardancy of ethylene vinyl‐acetate rubber (EVM) composites with intumescent flame retardants (IFR) consisting of ammonium polyphosphate (APP) and dipentaerythritol (DPER) has been investigated. The vulcanization characteristics were analyzed by a moving die rheometer. Thermogravimetric analysis (TGA) and fire behavior tests such as limiting oxygen index (LOI), vertical burning (UL 94), and cone calorimetry were used to evaluate the thermal properties and flame retardancy of EVM composites. Scanning electron microscopy (SEM) was used to study the morphology of residues of EVM composites. The addition of BAC significantly increased the maximum torque (MH) of EVM composites and EVM matrices. The combination of IFR with BAC can improve the thermal stability of EVM composites. Moreover, BAC can enhance char residue and promote the formation of a network for IFR. The current EVM/37IFR/3BAC composite achieved an LOI of 33.6% and a UL 94 V‐0 rating. The PHRR, total heat release (THR), and total smoke release (TSR) for EVM/IFR/BAC were greatly reduced as compared to EVM/40IFR. Also, the mechanical properties of the EVMIFR/BAC composites increased with increasing BAC contents. The physical percolation effect between BAC and EVM before and after thermal degradation, and the chemical catalysis effect between BAC and IFR during thermal degradation are responsible for the improved flame retardancy of EVM composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42414.  相似文献   

9.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Three kinds of inorganic particles, zinc borate (ZB), organic montmorillonite (OMMT), and expanded graphite (EG) as synergistic flame retardants, are incorporated into ethylene-propylene-diene monomer/polypropylene (EPDM/PP) composites filled with intumescent flame retardants (IFR). The effect of three synergistic flame retardants on the combustion, thermal stability, and mechanical properties of the EPDM/PP/IFR composites are investigated by limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), thermogravimetric analysis (TGA), scanning electron microscopy, mechanical property testing, and dynamic mechanical analysis (DMA). The results from LOI, UL-94, and CCT show that the synergistic effect of IFR with ZB and EG is better than IFR with OMMT in the flame retardant EPDM/PP/IFR composites. The TGA results indicate that the thermal stability and char residues of the composites is improved with the addition of inorganic particles, which is attributed to the formation of dense char layers to isolate heat flow. DMA results including storage modulus (G'), loss modulus (G"), and loss factor (tan δ) suggest that the composites with inorganic particles exhibit more rubber-filler interaction, which limits the movement of the rubber chains.  相似文献   

11.
本文采用磷酸、季戊四醇和三聚氰胺为原料,乙二醇为介质在一定条件下合成无卤膨胀型阻燃剂季戊四醇磷酸蜜胺盐,并对产物进行了差热、热失重及红外分析;根据该阻燃剂的膨胀度、剩炭率的测定结果,确定最佳合成条件为:n(磷酸):n(季戊四醇):n(三聚氰胺)=3:1:1.5~2;中间产物磷酸季戊四醇酯的合成温度120℃,合成时间2h;最终产物磷酸蜜铵盐合成温度100℃,时间4h。将该阻燃剂和高密度聚乙烯以不同比例共混,测定复合材料的力学性能、加工性能和燃烧性能。结果表明:以m(阻燃剂):m(聚乙烯)=15:85混合,可使复合材料有良好的机械加工性能和理想的阻燃效果。  相似文献   

12.
The flame retardancy of low‐density polyethylene (LDPE) treated with complex flame retardant composed of ultrafine zinc borate (UZB) and intumescent flame retardant (IFR) have been investigated by limited oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), cone calorimeter test, scanning electron micrograph (SEM), energy‐dispersive spectrometer (EDS), and X‐ray diffraction (XRD). The results of LOI and UL‐94 test indicate the desired flame retardancy of LDPE is obtained when the mass ratio of UZB to IFR is 4.2 : 25.8 and the complex flame retardant mass content is 30% (based on LDPE). The results of cone calorimeter show that heat release rate (HRR) peak, total heat release (THR), and mass loss of LDPE/IFR/UZB decrease substantially when compared with those of LDPE/IFR. TGA results show that the residue of LDPE/IFR/UZB increases obviously than that of LDPE/IFR when the temperature is above 600°C. SEM indicates the quality of char forming of LDPE/IFR/UZB is superior to that of LDPE/IFR. The results of EDS and XRD indicate that boron orthophosphate (BPO4) and zinc‐contained compounds are formed in the residual char and these substances may play an important role in stabilizing the intumescent char structure and decrease the degradation speed substantially when subjected to high temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3667–3674, 2007  相似文献   

13.
A char‐forming agent poly(4,6‐dichloro‐N‐hydroxyethyl?1,3,5‐triazin‐2‐amine‐1,6‐diaminohexane) (CNCO‐HA) containing triazine rings was chosen for improving the flame retardant of low density polyethylene (LDPE). The synergistic effect of CNCO‐HA and Ammonium polyphosphate (APP) on the flame retardancy and char‐forming behavior of LDPE were investigated. The limited oxygen index (LOI) and vertical burning test (UL‐94) results indicated the optimal weight ratio of APP to CNCO‐HA was 3:1, and the LOI value of composite reached 31.0% with 30% intumescent flame retardant (IFR) loading. The cone calorimeter test analysis revealed that IFR presented excellent char forming and smoke suppression ability, and resulted in the efficient decrease of combustibility parameters. The thermogravimetric analysis results demonstrated that IFR reduced the thermal degradation rate at main stage of degradation. Scanning electron microscopy observed that IFR promoted to form a compact and continuous intumescent char layer. The Laser Raman spectroscopy spectra showed that larger graphitization degree was formed to enhance the strength of char, and Fourier transform infrared results presented that P‐O‐C and P‐O‐P structures in the residue char were formed to improve shield performance of the char layer to obtain better flame retardant properties of the composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43950.  相似文献   

14.
A series of novel intumescent flame retardant (IFR) based on melamine, neopentyl glycol, and aluminum diethylphosphinate were prepared and tested. In addition, the synergistic effect of the novel IFR and zinc borate (ZB) on the flame retardancy of LLDPE composites was investigated. The structures of novel IFR and ZB were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The limiting oxygen index (LOI) increased from 19.3% for the pure LLDPE to 27% for the 25 wt% IFR/5 wt% ZB composites and the composites achieved the desired V-0 rating in the UL-94 test. Thermogravimetric analysis showed that the addition of IFR/ZB reduced the pyrolysis rate of the LLDPE composites at high temperatures and increased the amount of the char residues, and the char residue of LLDPE-5 reached 12.1 wt% at 700°C. Cone calorimetry (CCT) data showed that the peak of total heat release, heat release rate, and fire growth index were comparatively reduced, indicating that the addition of IFR/ZB decreased the fire hazard of LLDPE composites. The formation of a compact and thermally stable char layer on the surfaces of LLDPE composites was revealed from the scanning electrone microscopy images and digital photographs of the char residue after the CCT tests.  相似文献   

15.
张翔  张帆 《中国塑料》2012,(4):92-96
采用自制干法合成的磷-氮膨胀型阻燃剂(磷酸酯三聚氰胺盐,IFR)复配聚磷酸胺(APP)和聚四氟乙烯(PT-FE)阻燃改性聚丙烯(PP),利用极限氧指数法、垂直燃烧法分析了阻燃PP的燃烧性能,通过热重分析仪、傅里叶变换红外光谱仪、扫描电子显微镜和X射线光电子能谱对阻燃PP的热降解过程、燃烧性能、残炭结构进行了分析,并研究了燃烧过程中复配阻燃体系对PP的阻燃机理。结果发现,IFR、APP和PTFE之间具有明显的阻燃协效作用;当阻燃剂总添加量为24%(APP为6%、IFR为17.5%、PTFE为0.5%)(质量分数)时,阻燃PP的极限氧指数达到30.1%,垂直燃烧测试达UL 94V-0级;加入阻燃剂还能提高PP的热稳定性。  相似文献   

16.
Intumescent flame retardant consisting of ammonium polyphosphate and melamine, and MgAlZnFe‐CO3 layered double hydroxides (LDHs) prepared by the constant pH coprecipitation method, were added to poly(butylene succinate) (PBS) via melt blending to obtain novel intumescent flame retardant poly(butylene succinate) (IFR‐PBS) composites. A study on the effect of MgAlZnFe‐CO3 LDHs on the mechanical, thermal, and flame retardancy properties of IFR‐PBS composites was investigated. It was revealed that IFR‐PBS composites exhibited both excellent flame retardancy and antidripping properties when the content of MgAlZnFe‐CO3 LDHs was 1% (the total loading of flame retardant was 20%), for a goal of vertical flammability (UL‐94) V‐0 rate and a limiting oxygen index value of 35. The results showed that a suitable amount of MgAlZnFe‐CO3 LDHs had a noticeable synergistic effect on IFR‐PBS composites. Importantly, tensile strength and flexural strength were improved by the presence of MgAlZnFe‐CO3 LDHs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40736.  相似文献   

17.
将可膨胀石墨(EG)与P-N型膨胀阻燃剂(IFR)复合阻燃丙烯腈-丁二烯-苯乙烯共聚物(ABS)树脂,阻燃剂添加量为20%(质量分数,下同),通过极限氧指数(LOI)仪、垂直燃烧测试(UL-94)仪、锥形量热(CONE)仪和扫描电镜(SEM)研究了EG与IFR复合阻燃ABS的协同效应。结果表明,EG/IFR质量比为1/1为最佳配比,阻燃ABS的LOI达到29%,UL-94为V-0级;EG与IFR复合阻燃ABS,表现出一定的协同作用;通过SEM观察ABS/EG/IFR试样燃烧后样品发现,EG与IFR起到协同阻燃作用。  相似文献   

18.
The synergistic effects of some metal oxides on novel intumescent flame retardant (IFR)–thermoplastic polyurethane (TPU) composites were evaluated by limiting oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimetry, and scanning electron microscopy. The experimental data indicated that the metal oxides enhanced the LOI value and restricted the dropping of the composites. The IFR–TPU composites passed the UL‐94 V‐0 rating test (1.6 mm) in the presence of magnesium oxide (MgO) and ferric oxide (Fe2O3) at 35 wt % IFR loading, whereas only the MgO‐containing IFR–TPU composite reached a UL‐94 V‐0 rating at 30 wt % IFR loading. The TGA results show that the metal oxides had different effects on the process of thermal degradation of the IFR–TPU compositions. MgO easily reacted with polyphosphoric acid generated by the decomposition of ammonium polyphosphate (APP) to produce magnesium phosphate. MgO and Fe2O3 showed low flammability and smoke emission due to peak heat release rate, peak smoke production rate, total heat release, and total smoke production (TSP). However, zinc oxide brought an increase in the smoke production rate and TSP values. Among the metal oxides, MgO provided an impressive promotion on the LOI value. The alkaline metal oxide MgO more easily reacted with APP in IFRs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A novel intumescent flame retardant (IFR) composed of ammonium polyphosphate (APP), benzoxazine containing trialkoxysilane (BA-a-Si) and melamine (ME), is compounded with different specifications of MoS2 as synergist to flame retard polyformaldehyde (POM). The flame retardancy and mechanism of the composites are analyzed by limiting oxygen index (LOI), vertical combustion (UL-94) and cone calorimeter. At the same time, the mechanical properties and lubricating properties are tested by electromechanical testing machine and wear testing machine. The experimental results show that MoS2 has a good synergistic effect with IFR, and the smaller the average particle size of MoS2 is, it seems to be more beneficial to improve the flame retardancy of POM composites. Only a small amount of MoS2 (0.8 wt%) is needed to synergize with IFR, the flame retardant POM composite (FR-POM) can achieve UL-94 (3.2 mm) V-0 rating, LOI of 62.5%, and heat release rate reduction of 25.3%, total smoke release decreased by 29.5%. In addition, from the mechanical properties analysis, it is found that the microscale MoS2(M2) can better improve the bending and tensile properties of the FR-POM composites, while the nanoscale MoS2(N80) is more helpful to improve the lubricating properties.  相似文献   

20.
The aim of this work is to develop a halogen‐free thermoplastic polyurethane (TPU) composite with significantly improved fire performance by using a highly commercial phosphorous–nitrogen containing intumescent flame retardant (P–N IFR). Based on the characterizations of thermogravimetric analysis and in situ Fourier transform infrared spectra, P–N IFR powder was proved a desired flame retardant for TPU in theory and the thermal degradation property of PU/PNIFR composites at elevated temperatures was investigated as well. Fire performance was evaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphologies. Results showed that the addition of P–N IFR promotes the formation of char residues which were covered on the surface of polymer composites resulting in the improvement of thermal stability and flame retardancy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39772.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号