首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a planar 2-DOF parallel manipulator with actuation redundancy is proposed and the optimal design considering kinematics and natural frequency is presented. The stiffness matrix and mass matrix are derived, and the structural dynamics is modeled. The natural frequency is obtained on the basis of dynamic model. Based on the kinematic performance, the range for link length is given. Then, considering the natural frequency, the geometry is optimized. The natural frequency is simulated and compared with the corresponding non-redundant parallel manipulator. The designed redundant parallel manipulator has desired kinematic performance and natural frequency and is incorporated into a 4-DOF hybrid machine tool.  相似文献   

2.
This paper deals with the dynamics and control of a novel 3-degrees-of-freedom (DOF) parallel manipulator with actuation redundancy. According to the kinematics of the redundant manipulator, the inverse dynamic equation is formulated in the task space by using the Lagrangian formalism, and the driving force is optimized by utilizing the minimal 2-norm method. Based on the dynamic model, a synchronized sliding mode control scheme based on contour error is proposed to implement accurate motion tracking control. Additionally, an adaptive method is introduced to approximate the lumped uncertainty of the system and provide a chattering-free control. The simulation results indicate the effectiveness of the proposed approaches and demonstrate the satisfactory tracking performance compared to the conventional controller in the presence of the parameter uncertainties and un-modelled dynamics for the motion control of manipulators.  相似文献   

3.
This paper investigates the stiffness and natural frequency of a 3-DOF parallel manipulator with consideration of additional leg candidates. The stiffness model and natural frequency are derived, and then the stiffness and natural frequency of the manipulators are compared. The simulations show that the stiffness and natural frequency of the parallel manipulator with one or two additional legs are higher than those of the manipulator without additional leg. The stiffness performance and natural frequency of the manipulator with one additional leg can only be improved little by adding the second additional leg. It is better to develop this parallel manipulator by adding only one additional leg to construct a symmetrical architecture.  相似文献   

4.
A new robust nonlinear controller is presented and applied to a planar 2-DOF parallel manipulator with redundant actuation. The robust nonlinear controller is designed by combining the nonlinear PD (NPD) control with the robust dynamics compensation. The NPD control is used to eliminate the trajectory disturbances, unmodeled dynamics and nonlinear friction, and the robust control is used to restrain the model uncertainties of the parallel manipulator. The proposed controller is proven to guarantee the uniform ultimate boundedness of the closed-loop system by the Lyapunov theory. The trajectory tracking experiment with the robust nonlinear controller is implemented on an actual planar 2-DOF parallel manipulator with redundant actuation. The experimental results are compared with the augmented PD (APD) controller, and the proposed controller shows much better trajectory tracking accuracy.  相似文献   

5.
In this paper, a novel 6 degrees of freedom (DOFs) adaptive parallel manipulator with large tilting capacity is presented. The manipulator consists of four identical peripheral limbs and one center limb connecting the base and the moving platform. Due to the special architecture, the doubly actuated center limb of the manipulator could have infinite inverse solutions. In every configuration of the end-effector, the manipulator can adapt its center limb to the position and orientation with best dexterity. An optimization equation for obtaining the optimized dexterity of the manipulator is introduced to solve this nonholonomic problem, which also makes the manipulator capable of large tilting capacity. Targeting for the application of five-face machining, the detailed kinematic analysis of the manipulator is developed, which includes the closed-form solutions of inverse position problems, the singularity, dexterity, workspace and tilting capability. The analysis developed in this paper shows that the proposed manipulator has large tilting capacity and thus a suitable candidate for five-face machining.  相似文献   

6.
The dynamic formulation and performance evaluation of the redundant parallel manipulator are presented in this paper. By means of the principle of virtual work and the concept of link Jacobian matrices, the inverse dynamic model of the redundant parallel manipulator is set up. It consists of six linear consistent equations with eight unknown quantities. Then, the optimum solution of the actuating torques is achieved by employing the Moore-Penrose inverse matrix. It is with minimum norm and least quadratic sum among the possible actuating torque vectors. A series of new dynamic performance indices with obvious physical meanings have been proposed in the paper. By decoupling the inverse dynamics in the exhaustive way, a novel dynamic performance index combining the acceleration, velocity and gravity terms of the dynamic equations has been presented to evaluate the dynamic characteristic of the redundant parallel manipulator. With the index, it is possible to control the performance in the different direction. The index has been applied to the dynamic characteristic evaluation of the redundant parallel manipulator in the simulation. It is general and can be used for the dynamic performance evaluation of other types of parallel manipulators.  相似文献   

7.
This paper deals with the dynamic modeling and design optimization of a three Degree-of-Freedom spherical parallel manipulator. Using the method of Lagrange multipliers, the equations of motion of the manipulator are derived by considering its motion characteristics, namely, all the components rotating about the center of rotation. Using the derived dynamic model, a multiobjective optimization problem is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed approach is illustrated with the design optimization of an unlimited-roll spherical parallel manipulator with a main objective to minimize the mechanism mass in order to enhance both kinematic and dynamic performances.  相似文献   

8.
Redundant actuation can improve the performance and ability of parallel manipulator. In order to deal with coordination and distribution of the driving force of the parallel manipulator with redundant actuation and to realize the control strategy based on dynamics, on the basis of the original 5UPS/PRPU parallel manipulator, it increases a drive for the middle PRPU passive constraint branch to make it a redundant actuation branch. It introduces configurations’ redundant types and compositions of 5UPS/PRPU parallel manipulator with redundant actuation, illustrates that the mechanism is redundant actuation from the perspective of degree of freedom and establishes a dynamic model based on Lagrangian method. On the basis of the weighted optimization principle of driving torque, it optimizes the driving torque of the parallel manipulator and calculates the driving force of the redundant driving chain with cutting force. It carries out the simulation by using ADAMS software and proves validity of dynamic model. Finally it detects the dynamic performance of the parallel manipulator by processing experiment of parallel manipulator with redundant actuation and its non-redundant counterpart.  相似文献   

9.
Kinematic analysis is one of the key issues in the research domain of parallel kinematic manipulators. It includes inverse kinematics and forward kinematics. Contrary to a serial manipulator, the inverse kinematics of a parallel manipulator is usually simple and straightforward. However, forward kinematic mapping of a parallel manipulator involves highly coupled nonlinear equations. Therefore, it is more difficult to solve the forward kinematics problem of parallel robots. In this paper, a novel three degrees-of-freedom (DOFs) actuation redundant parallel manipulator is introduced. Different intelligent approaches, which include the Multilayer Perceptron (MLP) neural network, Radial Basis Functions (RBF) neural network, and Support Vector Machine (SVM), are applied to investigate the forward kinematic problem of the robot. Simulation is conducted and the accuracy of the models set up by the different methods is compared in detail. The advantages and the disadvantages of each method are analyzed. It is concluded that ν-SVM with a linear kernel function has the best performance to estimate the forward kinematic mapping of a parallel manipulator.  相似文献   

10.
In this paper, dimensional optimization of a six-degrees-of-freedom (DOF) 3-CCC (C: cylindrical joint) type asymmetric parallel manipulator (APM) is performed by using particle swarm optimization (PSO). The 3-CCC APM constructed by defining three angle and three distance constraints between base and moving platforms is a member of 3D3A generalized Stewart–Gough platform (GSP) type parallel manipulators. The dimensional optimization purposes to find the optimum limb lengths, lengths of line segments on the base and moving platforms, attachment points of the line segments on the base platform, the orientation angles of the moving platform, and position of the end-effector in the reachable workspace in order to maximize the translational and orientational dexterous workspaces of the 3-CCC APM, separately. The dexterous workspaces are obtained by applying condition number and minimum singular values of the Jacobian matrix. The optimization results are compared with the traditional GSP manipulator for illustrating the kinematic performance of 3-CCC APM. Optimizations show that 3-CCC APM have superior dexterous workspace characteristics than the traditional GSP manipulator.  相似文献   

11.
《Robotics and Computer》2014,30(2):99-106
This paper presents a case study on a reconfigurable hybrid parallel robot dubbed ReSl-Bot. It addresses the realm of reconfigurable 6-DOF parallel mechanisms, for sustainable manufacturing. It also features a self-reconfigurable architecture. A systematic analysis involving kinematics, constant orientation workspace, singularity and stiffness is developed in detail. Interesting features are discussed, revealing some unique characteristics of the studied architecture. A multi-objective optimization procedure is also carried out with weighted stiffness, dexterity and workspace volume as the performance indices.  相似文献   

12.
The objective of the research project was to design and construct a 3DOF tripod-type electro-pneumatic parallel manipulator that could be used for pick-and-place tasks in municipal waste recycling facilities. The fundamental requirement was that the manipulator be simple and cheap to construct, operate and maintain as well as robust and resistant to damage. The forward and inverse kinematic problem as well as working space and strength analysis issues were used for construction of manipulator. The prototype was tested using different payloads and velocities to establish its positioning accuracy and repeatability. The robot behavior was controlled with a commercially available industrial controller, which was reported insufficient for point-to-point operations required during solid waste handling. Conclusions have been drawn on how to optimize the robot structure and control.  相似文献   

13.
Y. Lu  X.P. Li 《Advanced Robotics》2014,28(16):1121-1132
A novel 6-DoF parallel manipulator I with three planar limbs is proposed and its dynamics is analyzed systematically. First, its characteristics and DoF are analyzed and calculated. Second, the formulae for solving kinematics of the moving platform and the planar limbs are derived. Third, the formulae for solving the inertial wrench applied on the planar limbs and the moving platform are derived, and dynamics formula is derived for solving dynamic active forces applied onto the planar limbs. Fourth, a singularity of the proposed parallel manipulator is determined and analyzed. Fifth, an analytic example is given for solving the kinetostatics and dynamics of the proposed parallel manipulator, and the solved results are analyzed and verified by the simulation mechanism. Finally, a workspace is constructed and analyzed by comparing with an existing 6-DoF parallel manipulator.  相似文献   

14.
High precision is still one of the challenges when parallel kinematic machines are applied to advanced equipment. In this paper, a novel planar 2-DOF parallel kinematic machine with kinematic redundancy is proposed and a method for redundant force optimization is presented to improve the precision of the machine. The inverse kinematics is derived, and the dynamic model is modeled with the Newton–Euler method. The deformations of the kinematic chains are calculated and their relationship with kinematic error of the machine is established. Then the size and direction of the redundant force acting on the platform are optimized to minimize the position error of the machine. The dynamic performance of the kinematically redundant machine is simulated and compared with its two corresponding counterparts, one is redundantly actuated and the other is non-redundant. The proposed kinematically redundant machine possesses the highest position precision during the motion process and is applied to develop a precision planar mobile platform as an application example. The method is general and suitable for the dynamic modeling and redundant force optimization of other redundant parallel kinematic machines.  相似文献   

15.
This paper presents a comparative analysis of three degrees of freedom planar parallel robotic manipulators (x, y and θz motion platforms) namely 2PRP-PPR, 2PRR-PPR, 3PPR (Hybrid), 3PRP (Hephaist) and 3PPR U-base in terms of optimal kinematic design performance, static structural stiffness and dynamic performance (energy and power consumption). Kinematic and dynamic performance analyses of these platforms have been done using multibody dynamics software (namely ADAMS/View). Static stiffness of the above-mentioned manipulators have been analysed, compared using the conventional joint space Jacobian stiffness matrix method, and this method has been verified through a standard finite-element software (namely NASTRAN) as well. The size of the fixed base or aspect ratio (width/height) can be varied for various working conditions to understand its design parameters and optimal design aspects which are depending on the fixed base structure. Different aspect ratios (fixed base size) are considered for the comparative analyses of isotropy, manipulability and stiffness for the above-mentioned planar parallel manipulators. From the numerical simulation results, it is observed that the 2PRP-PPR manipulator is associated with a few favourable optimum design aspects such as singularity-free workspace, better manipulability, isotropy, higher stiffness and better dynamic performance in terms of power and energy requirement as compared to other planar parallel manipulators.  相似文献   

16.
17.
In this study, the effects of joint clearance on the dynamic performance of a planar 2-DOF pick-and-place parallel manipulator are investigated. The parallel manipulator is modeled by multi-body system dynamics. The contact effect in revolute joints with clearance is established by using a continuous analysis approach that is combined with a contact force model considering hysteretic damping. The evaluation of the contact force is based on Hertzian contact theory that accounts for the geometrical and material properties of the contacting bodies. Furthermore, the incorporation of the friction effect in clearance joints is performed using a modified Coulomb friction model. By numerical simulation, variations of the clearance joint's eccentric trajectory, the joint reaction force, the input torque, the acceleration, and trajectory of the end-effector are used to illustrate the dynamic behavior of the mechanism when multiple clearance revolute joints are considered. The results indicate that the clearance joints present two obvious separation leaps in a complete pick-and-place working cycle of the parallel manipulator, following a collision. The impact induces system vibration and thus reduces the dynamic stability of the system. The joint clearances affect the amplitudes of the joint reaction force, the input torque, and the end-effector's acceleration, additionally the joint clearances degrade the kinematic and dynamic accuracy of the manipulator's end-effector. Finally, this study proposes related approaches to decrease the effect of joint clearances on the system's dynamic properties for such parallel manipulator and prevent “separation-leap-impact” events in clearance joints.  相似文献   

18.
3-DOF translational parallel manipulators have been developed in many different forms, but they still have respective disadvantages in different applications. To overcome their disadvantages, the structure and constraint design of a 3-DOF translational parallel manipulator is presented and named the Tri-pyramid Robot. In the constraint design of the presented manipulator, a conical displacement subset is defined based on displacement group theory. A triangular pyramidal constraint is presented and applied in the constraint designs between the manipulator?s subchains. The structural properties including the decoupled motions, overconstraint elimination, singularity free workspace, fixed actuators and isotropic configuration are analyzed and compared to existing structures. The Tri-pyramid Robot is constrained and realized by a minimal number of 1-DOF joints. The kinematic position solutions, workspace with variation of structural parameters, Jacobian matrix, isotropic and dexterity analysis are performed and evaluated in the numerical simulations.  相似文献   

19.
An analysis of the inverse kinematics for a 5-DOF manipulator   总被引:2,自引:0,他引:2  
This paper proposes an analytical solution for a 5-DOF manipulator to follow a given trajectory while keeping the orientation of one axis in the end-effector frame. The forward kinematics and inverse kinematics for a 5-DOF manipulator are analyzed systemically. The singular problem is discussed after the forward kinematics is provided. For any given reachable position and orientation of the end-effector, the derived inverse kinematics will provide an accurate solution. In other words, there exists no singular problem for the 5-DOF manipulator, which has wide application areas such as welding, spraying, and painting. Experiment results verify the effectiveness of the methods developed in this paper.  相似文献   

20.
Two types of kinematic calibration method for a 2-DOF (degrees of freedom) translational parallel manipulator are proposed using different error models. A calibration experiment is performed on both methods using an Absolute Laser Tracker and the results are compared. Two error models of the 2-DOF translational parallel manipulator are established using differential method and linear perturbation method, respectively. The two error models are solved using both the least squares method and linear equations. The results for the two different calibration methods show that the error model based on differential method is more effective in improving the accuracy of the 2-DOF translational parallel manipulator. Overall, the absolute position error of the 2-DOF translational parallel manipulator is significantly reduced to 0.13?mm from 0.93?mm after kinematic calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号