共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
惯性+多模卫星组合导航系统通常采用定常参数的加权最小二乘算法进行多传感器信息融合,若加权系数与实际噪声统计特性不吻合,将会对组合导航精度产生不利影响.为解决该问题,提出一种基于自适应滤波的改进信息融合算法,对惯性及卫星导航数据应用自适应Kalman滤波以估计惯性导航误差,对滤波输出进行基于加权最小二乘法的多模信息融合,并根据滤波误差方差阵的解算结果对加权系数进行实时调整以优化估计精度.仿真结果表明该算法能够在一定程度上提高组合导航系统的精度和对不同随机噪声的适应能力. 相似文献
5.
6.
7.
8.
9.
详细分析了卫星自主导航中常用的星光角距测量原理和雷达高度仪测量原理。根据测量原理,建立了卫星轨道运动方程和观测方程。构造了包含两个子系统的联邦滤波器,并分别对每个子系统和整个系统进行了定轨仿真。仿真结果表明,采用联邦滤波器可以明显提高定轨精度。 相似文献
10.
11.
针对单独使用某一种的导航设备都无法满足机载火控系统和飞行系统要求的问题,推导出 SINS/GPS 组合导航中的一种新的卡尔曼滤波算法.将有色噪声的白化处理引入到卡尔曼滤波器,设计了一套动态车载组合导航试验系统,给出了基于有色噪声白化的卡尔曼滤波器算法的具体步骤,以动态车载 SINS/GPS 组合导航系统试验的数据分析验证了此算法的正确性和合理性.分析结果表明:基于有色噪声白化的卡尔曼滤波器可以很好地解决有色噪声的影响,弥补了传统卡尔曼滤波器的不足,提高了导航结果的精确度. 相似文献
12.
舰船导航信号非线性UKF滤波定位解算方法研究 总被引:3,自引:1,他引:2
根据UKF( unscented Kalman fliter)的工作机理,对所建立的双星(GPS、劳兰C)/航位推算(DR)舰船组合导航连续非线性系统模型进行解算,形成一套UKF在舰船组合导航中的递推算法。该方法根据随机变量的先验统计特性,按照特定的规则将状态变量分解成2n +1维的散布形式,然后利用统计线性回归技术,实现对非线性函数的线性化,可以获得更小的线性化误差。实船数据试验表明:UKF算法与扩展卡尔曼滤波(EKF)算法相比,系统稳定性更好,滤波器估计精度更高。 相似文献
13.
针对无人机编队相对导航系统中视觉导航传感器量测噪声服从非高斯分布的问题,提出一种带噪声估计器的鲁棒自适应容积卡尔曼滤波(CKF)算法。该算法将Huber求解线性回归问题与协方差匹配方法相结合,利用残差序列实时估计,调整系统过程噪声和量测噪声的统计特性,并采用遗忘加权参数对接收到的测量数据进行加权,从而准确地估计出无人机之间的相对位置、速度和姿态信息,提高了鲁棒CKF算法的自适应能力。仿真结果表明,与标准CKF算法和鲁棒CKF算法相比,该算法对受污染的噪声统计特性有较强的自适应性,估计精度高,鲁棒性更强。 相似文献
14.
针对自主水下航行器(AUV)受水下环境的局限难以提高导航性能的问题,提出了一种融合多传感器信息的INS/GPS/DVL组合导航方案,利用分散化滤波中的联邦Kalman滤波来实现AUV组合导航方案,通过动态信息分配系数优化了各子系统的导航信息,增强了AUV的导航性能。仿真结果表明,该方案充分提取了导航传感器的信息,有效地提高了AUV的导航精度和水下定位能力。 相似文献
15.
基于自适应比例修正无迹卡尔曼滤波的目标定位估计算法 总被引:1,自引:2,他引:1
针对无线传感器网络中基于接收信号指示强度(RSSI)定位系统在精确性和实时性方面存在的问题,提出了一种基于自适应比例修正无迹卡尔曼滤波(ASUKF) 的定位估计算法。通过分析RSSI 定位模型的特点,将定位问题转化为非线性系统估计问题。该算法在滤波过程中采用比例修正对称采样策略,并利用次优Sage-Husa 估计器实时处理系统噪声的统计特性,对目标位置和信道参数进行同时估计解算。实验及仿真结果表明,与标准UKF 估计算法相比,新算法有效减小了状态估计误差,提高了滤波的稳定性,定位精度更为准确。 相似文献
16.
17.