首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
在原有杜芬振子检测微弱特征信号的理论基础上,提出了利用相关系数法来刻画系统微小的相变,证实了微弱特征信号对杜芬系统的影响远大于其他信号对该系统的影响,阐述了利用相关系数法检测极微弱特征信号的步骤,给出了阈值的选择条件.最后将该方法应用于实验当中取得了较好的检测效果.  相似文献   

2.
当利用混沌理论进行微弱信号的检测时,针对不同频率的信号只能分别构建不同的检测系统进行检测,势必使其检测效率低下.本文阐述了一种分频段阈值变换的混沌检测方法,并基于该方法实现了自跟踪扫频检测.为此,首先分析了微弱信号混沌检测方法中的变阈值法和定阈值法,指出了这两种方法的优缺点,然后提出了分频段阈值变换的混沌检测方法,并基于该方法开展了微弱信号的自跟踪扫频检测控制的研究,设计制作了微弱信号自跟踪扫频检测控制电路,并进行了微弱信号自跟踪扫频混沌检测的实验研究.结果表明该检测控制系统可以实现在噪声背景下的中低频率微弱周期信号的自跟踪扫频检测.  相似文献   

3.
针对无线通信过程中,传统系统对微弱通信信号检测准确度不高的问题;分析了微弱通信信号传递的极化特性,利用电波的极化特性优化双极化天线的方法,基于TD-SCDMA双极化天线技术,设计并实现了基于TD SCDMA双极化天线的微弱通信信号检测系统,根据TD SCDMA双极化天线技术实现微弱通信信号的检测,采用TM320LF2407 DSP2407芯片的脉冲信号检测系统的设备,分析了信号检测系统的硬件结构设计,分析双极化天线下微弱通信信号的网络规划,在该网络规划条件下通过匹配滤波幅值检测完成微弱通信信号的检测;实验结果说明,所提检测系统能够满足微弱通信信号的实时检测和精度要求.  相似文献   

4.
本文应用TMS320VC549实现基于混沌理论的水下微弱信号检测.通过分析杜芬振子的混沌特性和该振子的阵发性混沌运动机理.得出了利用过零率识别阵发混沌运动状态并求取阵发混沌周期的方法检测微弱信号频率的方法.结合DSP系统的优点.搭建了基于DSP和混沌理论的微弱信号检测系统,并设计了相应的算法软件流程.最后,对不同频率的正弦周期信号进行了相应的频率检测,实验结果证明了此系统的可行性和有效性,并且通过改变策动力的频率,系统可检测各种频率的微弱正弦信号.  相似文献   

5.
研制了一种生物神经电信号检测系统.该检测系统采用微丝电极作为信号采集传感器,经过微弱信号调理仪器对微弱神经信号进行放大、滤波等处理,开发基于LabVIEW的上位机软件对所采集的信号进一步分析、显示以及存储等.实验中仪器噪声小于20 μV的条件下检测到了幅值为160 μV神经电信号,S/N≈8,结果表明:本检测系统可实现对微弱神经电信号的检测.  相似文献   

6.
在电子信息、电力控制、通信、生物学等领域,都不同程度地需要进行微弱信号检测,为了提取强噪声背景下的微弱信号的幅值和频率,通过对混沌系统的Duffing方程动力学特性的分析,利用该系统对周期信号的敏感性和对噪声的免疫性,构建了多重相关和混沌振子相结合的微弱信号检测系统,并对具有代表性的微弱正弦信号进行了仿真检测;仿真实验表明:该系统可以对未知纳伏级的正弦信号幅值和频率进行有效的提取,并可达到较高的精度,同时也可进一步提高对低信噪比信号的检测能力.  相似文献   

7.
针对谐振式陀螺输出频率差信号微弱的特点,设计了一种应用于谐振式光纤陀螺的数字化双相位的锁相放大器,用于检测谐振式光纤陀螺Sagnac效应引起的角速度信号.该锁相放大器无需对参考信号进行相位调整即可实现对待测信号的鉴幅功能,改善系统检测系统的信噪比,实现微弱信号检测.采用数字电路实现该锁相放大器,并将其集成到FPGA上,有利于陀螺小型化和集成化.  相似文献   

8.
采用MSP430作为整个系统的主控制器,设计并制作了一套微弱信号检测装置,用于检测在强噪声背景下已知频率的微弱信号的幅度值,并在LCD上显示该值。最终测试表明,该系统能较好地实现微弱信号的检测,其抗干扰能力强,测量精度高。  相似文献   

9.
本文介绍了以S3C4510B为核心的微弱信号采集系统.该系统采用放大器对信号进行放大滤波;采用混沌算法检测微弱信号;采用USB接口与上位机通信;采用Labview显示信号波形.本文重点介绍了USB接口设计与USB固件程序设计.  相似文献   

10.
基于混沌振子和DSP的微弱信号频率检测   总被引:1,自引:0,他引:1  
本文应用TMS320C6203B实现了基于混沌理论的微弱信号频率检测.通过分析杜芬振子的阵发混沌运动机理,得出了利用过零率求取阵发混沌周期并进行微弱信号频率检测的方法,并通过改变策动力的频率,系统可检测各种频率的微弱正弦信号.结合DSP系统的优点,搭建了基于DSP和混沌理论的微弱信号检测系统,并时系统工作流程进行了研究.最后,对不同频率的正弦周期信号进行了相应的频率检测,实验结果证明了此系统的可行性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号