首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a pervaporation process, a surface-modified hydrophobic membrane was used for recovery of esters which are volatile organic flavor compounds; ethyl acetate (EA), propyl acetate (PA), and butyl acetate (BA). A surface-modified tube-type membrane was used to evaluate the effects of the feed concentration (0.15–0.60 wt%) and feed temperature (30–50 °C) on the separation of EA, PA, and BA from dilute aqueous solutions. The permeation flux increased with the increasing feed ester concentration and operating temperature. EA, PA, and BA in the permeate were concentrated up to 9.13–32.26, 11.44–34.95, and 14.96–36.37 wt%, respectively. The enrichment factors for the 0.15–0.60 wt% feed solution of EA and BA were in the range of 48.5-62.8 and 97.7-101.5, respectively. Phase separation occurred in the permeate stream because the ester concentration in the permeate was above the saturation limit. This meant that selectivity of the membrane was high enough for the recovery of esters from dilute aqueous solution, even though the enrichment factor of the membrane was lower than that of non-porous PDMS membrane. The fluxes of EA, PA, and BA at 0.60 wt% (6,000 ppm) feed concentration and 40 °C were 254, 296, and 318 g/m2.hr, which are much higher than those obtained with polymer membranes. In the case of non-porous PDMS at feed concentrations of 90-4,800 ppm and at 45 °C, it was reported that the permeate flux of EA was 1.1–5.8 g/m2.h. Compared to non-porous PDMS, the surface-modified membrane investigated in this study showed a much higher flux and enough selectivity of esters.  相似文献   

2.
Desorption resistance taking place between a membrane surface and a permeate vapor phase, which had not accounted for an overall mass transfer resistance in pervaporation, was studied. The resistance-in-series concept and Flory-Huggins thermodynamics were used to establish model equations for evaluating the desorption resistance in the permeation of a single component. In order to exclude any possible concentration polarization of permeants occurring in feed adjacent to a membrane surface, the permeations of pure water through polyether imide membranes with various thicknesses were observed at different permeate pressures. From the permeation data of pure water through the membranes with help of the model equations, both the permeability coefficient based on a general flux equation expressed in terms of the chemical potential driving force and the desorption resistance were determined quantitatively. According to the model equations, the desorption resistance could be affected by two factors: membrane thickness and permeate pressure. The magnitude of the desorption resistance was dependent mainly on permeate pressure, and the importance of the resistance relative to diffusion resistance in the membrane for the overall process became more significant with decreasing membrane thickness at a given permeate pressure. As the membrane thickness decreased and/or the permeate pressure increased, the desorption resistance was observed to be more significant, causing higher chemical activity and a higher concentration of the permeant at the downstream interface of the membrane. In some cases, the desorption resistance was predominant over the diffusion resistance in very thin membrane thicknesses. This study seeks to emphasize the importance of the desorption resistance on the transport of components at small membrane thicknesses or high permeate pressure. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
《分离科学与技术》2012,47(7):843-861
Abstract

Several organophilic membranes were utilized to selectively permeate ethanol, n-butanol, and t-butanol from dilute aqueous mixtures using pervaporation (PV). Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes were utilized to investigate the effect of temperature, pressure, and start-up/transient time on the separation of aqueous ethanol mixtures. Results indicate optimal ethanol selectivity and flux at the lowest permeate-side pressure. Increased temperature significantly enhanced the productivity of PTMSP, but extended operation of the PTMSP membranes at high temperatures resulted in flux degradation. Two other hydrophobic membranes, poly(dimethyl siloxane) (PDMS) and a poly(methoxy siloxane) (PMS) composite, were used to separate n-butanol and t-butanol from dilute aqueous mixtures. The effect of feed concentration on the flux and selectivity was investigated. Both membranes were found to be more permeable to n-butanol than t-butanol. The PDMS membrane was found to be more effective than the PMS membrane in terms of flux and selectivity. The effect of membrane thickness on water permeation and on organic selectivity was also studied using the PDMS membrane.  相似文献   

4.
《分离科学与技术》2012,47(16):2299-2304
Pervaporation of acetonitrile-water mixtures was carried out using three commercial membranes, viz: polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF). The effects of feed concentration and feed temperature on the pervaporation performance, total and partial permeate fluxes, as well as acetonitrile selectivity, were investigated. It was found that increase in temperature yields higher total fluxes and lower selectivity for acetonitrile-water system. Changing concentration of acetonitrile in the range concerned leads to significant effect on total flux and selectivity. PDMS membrane was found to be most selective for acetonitrile separation. The total flux through the membranes was found to be in the order of PTFE > PVDF > PDMS, and the acetonitrile selectivity was found to be in the order of PDMS > PVDF > PTFE. The activation energies of water and acetonitrile associated with the permeation process for the PDMS, PTFE, and PVDF membranes were calculated to be in the ranges of 0.29–0.99, 0.6–0.87, 0.45–2.73 kJ/mol for acetonitrile and 1.23–1.95, 1.37–1.71, 1.16–3.37 kJ/mol for water at different concentrations, respectively.  相似文献   

5.
The vapor permeation characteristics of ester compounds (ethyl acetate, EA; ethyl propionate, EP; and ethyl butyrate, EB) through a tube-type surface-modified alumina-silane hydrophobic membrane were investigated. Experiments were performed to evaluate the effects of the feed concentration (0.15–0.60 wt%) and temperature (30–50 °C) on the separation of EA, EP, and EB from aqueous solutions. It was found that the permeation flux increased with increasing feed ester concentration and operating temperature. The fluxes of EA, EP, and EB at 0.60 wt% feed concentration and 40 °C were 282, 506, 742 g/m2h, which were much higher than those of PDMS polymer membrane. The separation factors for the 0.15–0.60 wt% feed solutions of EA, EP, and EB at 40 °C were in the range of 28.1–93.9, 145.3–162.6, and 260.4–268.8, respectively. Phase separation occurred in the permeate when collected in a cold trap, because the concentration of the ester in the permeate was much higher than its solubility.  相似文献   

6.
Mass transfer in pervaporation is usually regarded as limited by the solution-diffusion step inside the dense selective polymer layer. In the case of pervaporation for the extraction of volatile organic compounds through organophilic membranes, especially at low feed temperature (about 300 K), the influence of the downstream pressure cannot be neglected. A contribution to the study of the operating parameters on the vapour side in a pilot plant — from the membrane to the condenser — to the overall mass transfer is presented.

A “convection-diffusion” model has been established to calculate the partial pressure gradients in the vapour phase up to the downstream face of the membrane. This equation has been combined with a relation for the mass transfer inside the membrane with a driving force expressed as a difference in fugacities.

The partial permeate pressures and the pervaporate fluxes obtained first with a pure compound (water) and secondly with binary mixtures (water-ethanol) pervaporated through membranes of polydimethylsiloxane (PDMS) on a pilot plant scale are well predicted by the model. Moreover, on the permeate side, the effects of unavoidable non-condensable gases, of the condenser temperature and of the distance between the module and the condenser on the flux and on the selectivity have been established for different total permeate pressures (300–3000 Pa). At high pressure, the pervaporation selectivity towards ethanol exhibits a minimum value as a function of the permeate circuit design.  相似文献   


7.
For the separation of volatile organic compounds (VOCs) from water by pervaporation, three polysiloxaneimide (PSI) membranes were prepared by polycondensation of three aromatic dianhydrides of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA) with a siloxane‐containing diamine. The PSI membranes were characterized using 1H‐NMR, ATR/IR, DSC, XRD, and a Rame‐Hart goniometer for contact angles. The degrees of sorption and sorption selectivity of the PSI membranes for pure organic compounds and organic aqueous solutions were investigated. The pervaporation properties of the PSI membrane were investigated in connection with the nature of organic aqueous solutions. The effects of feed concentration, feed temperature, permeate pressure, and membrane thickness on pervaporation performance were also investigated. The PSI membranes prepared have high pervaporation selectivity and permeation flux towards hydrophobic organic compounds. The PSI membranes with 150‐μm thickness exhibit a high pervaporation selectivity of 6000–9000 and a high permeation flux of 0.031–0.047 kg/m2 h for 0.05 wt % of the toluene/water mixture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2691–2702, 2000  相似文献   

8.
Poly(1-phenyl-1-propyne)/polydimethysiloxane (PPP/PDMS) graft copolymer membranes having various PDMS content were prepared by solvent casting method, and the permeation characteristics at pervaporation were examined upon the aqueous solutions containing organic liquids such as alcohols, acetone, dioxane, acetonitrile, pyridine, and DMF. At pervaporation of ethanol/water mixture, preferential permeation of ethanol was observed for all the copolymer membranes, although PPP membrane showed water permselectivity. The permselectivity of the copolymer membrane also depended on operation temperature, but was independent on the thickness of the membrane. Furthermore, an excellent permselectivity of organic liquids was observed at the pervaporation of several organic liquid/water mixtures except in the case of DMF/water mixture. Observed high selectivity is thought to be due to the depression of the membrane swelling and the high solubility of the liquids into the membrane.  相似文献   

9.
Effect of the binding interfaces of composite polydimethylsiloxane (PDMS) membranes on their pervaporation performance was studied. The membranes were made up of PDMS as active skin layer and polysulfone (PSF) or polyamide (PA) as supporting layer. PDMS‐PSF membrane was numbered 1, and PDMS‐PA membrane numbered 2. The pervaporation experiments were carried out by using the composite membranes and dilute ethanol–water mixture. The experimental measurements for the permeation performance under various operating conditions (e.g., feed concentration and temperature) showed that the specific permeation rate of membrane 2 was over membrane 1 by seven times at least. A resistance‐in‐series model was applied to formularize the transport of the permeants. Influence of the binding interfaces between the active skin layer and support layers in these membranes on pervaporation performance was analyzed. The cross section morphology of the membranes and chemical element distribution along membrane thickness were examined by using SEM and EDS. It was found that, although the PDMS intrusion layer into PSF near the interface was only about 2 μm, it gave significant effect on the permeation performance. It implied that the resistance produced by the intrusion layer into PSF was apparently larger than that of PDMS intruding PA and over intrinsic PDMS resistance. These should be probably attributed to structures and formation of the binding interfaces. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2468–2477, 2007  相似文献   

10.
Surface-modified alumina membrane (A12O3) was used for ester flavor recovery by pervaporation. This study focused on the permeation characteristics of ester compounds (ethyl acetate, EA; ethyl propionate, EP; ethyl butyrate, EB) through tube-type hydrophobic membrane. Experiments were performed to evaluate the effects of the feed concentration (0.15-0.60 wt%) and temperature (30-50 ‡C) on separation of EA, EP, and EB from aqueous solutions. It was found that the permeation flux increased with increasing feed ester concentration and operating temperature. The fluxes of EA, EP, and EB at 0.60wt% feed concentration and 40 ‡C were 254, 343, and 377 g/m2 hr, which was much higher than those of polymer membranes. It was reported that the permeate flux of EA with PDMS was 1.1-58 g/m2Phr at feed concentration of 90-4,800 ppm and 45 ‡C. The separation factors for the 0.15-0.60 wt% feed solution of EA, EP, and EB at 40 ‡C were in the range of 66.9-78.9, 106.5-97.3, and 120.5-122.8, respectively. Due to the high separation factor, phase separation occurred in permeate stream because the ester concentration in permeate was much above the saturation limit.  相似文献   

11.
The present work considers the application of an integrated pervaporation process to improve the pervaporation performance of acetic acid over water. This integrated pervaporation process was based on a plain PDMS membrane with a hydrophobic ionic liquid composed of a heterocyclic cation and [PF6]? anions. The hydrophobic ionic liquid was introduced as the third phase between the aqueous phase and the plain PDMS membrane for improving mass-transfer of acetic acid from its aqueous matrix to the PDMS membrane. The primary results indicated that the ionic liquid as an extractant prior to pervaporation was favorable for improving the permeate selectivity and the permeate flux of acetic acid compared with using only a plain PDMS membrane. This performance could be attributed to the acetic acid concentrated and the water molecules rejected by ionic liquid prior to pervaporation. Extraction of a real effluent containing acetic acid from an antibiotic pharmaceutical plant was carried out using the above integrated pervaporation, and the results imply that this integrated pervaporation process could be scaled up for recovering acetic acids over its water-rich effluents.  相似文献   

12.
The present work considers the application of an integrated pervaporation process to improve the pervaporation performance of acetic acid over water. This integrated pervaporation process was based on a plain PDMS membrane with a hydrophobic ionic liquid composed of a heterocyclic cation and [PF6]- anions. The hydrophobic ionic liquid was introduced as the third phase between the aqueous phase and the plain PDMS membrane for improving mass-transfer of acetic acid from its aqueous matrix to the PDMS membrane. The primary results indicated that the ionic liquid as an extractant prior to pervaporation was favorable for improving the permeate selectivity and the permeate flux of acetic acid compared with using only a plain PDMS membrane. This performance could be attributed to the acetic acid concentrated and the water molecules rejected by ionic liquid prior to pervaporation. Extraction of a real effluent containing acetic acid from an antibiotic pharmaceutical plant was carried out using the above integrated pervaporation, and the results imply that this integrated pervaporation process could be scaled up for recovering acetic acids over its water-rich effluents.  相似文献   

13.
《分离科学与技术》2012,47(12):2894-2914
Abstract

In order to simultaneously achieve both high permselectivity and permeability (flux) for the recovery of aromatic compounds such as phenol from aqueous streams, a composite organophilic hollow fiber based pervaporation process using PDMS/PEBA as two-layer membranes has been developed. The process employed a hydrophobic microporous polypropylene hollow fiber, having thin layers of silicones (PDMS) and PEBA polymers coating on the inside diameter. The composite membrane module is used to investigate the pervaporation behavior of phenol in water in a separate study; and that of a mixture of phenol, methanol, and formaldehyde in an aqueous stream (a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process) in another study. The fluxes of phenol and water increase relatively linearly with increasing concentration especially at low feed concentration, and exhibit a near plateau with further increase in concentration. As a result, the phenol/water separation factor decreases as the feed concentration increases. Significant improvement in phenol/water separation factor and phenol flux is achieved for this two-layer (PDMS/PEBA) membranes as compared to that achieved using only PDMS membrane. The phenol and water fluxes and the separation factor are highly sensitive to permeate pressure as all decrease sharply with increase in permeate pressure. For this membrane, an increase in temperature increases the separation factor, and also permeation fluxes of phenol and water. An increase in feed-solution velocity does not have a significant effect on phenol and water fluxes, and also on the separation factor at least within the range of the feed-solution velocity considered. In the study of pervaporation behavior of a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process, phenol permeation shows a much higher flux and a higher increase in flux with increase in concentration is also exhibited as compared to that exhibited by methanol permeation. This thus indicates that the membrane is more permeable to phenol than to methanol and formaldehyde.  相似文献   

14.
A polydimethylsiloxane (PDMS) membrane was improved by graft polymerization of 1H,1H,9H-hexadecafluorononyl methacrylate (HDFNMA) by plasma, which had the effect of increasing the selectivity for volatile organic compounds (VOCs). The use of an easy quantitative analysis for the pervaporation through plasma-grafted PDMS membranes was investigated. The degrees of grafting on the inside and reverse side of the grafted PDMS membranes were lower than on the surface. Only part of the HDFNMA sorbed into the PDMS membrane was grafted onto the PDMS membrane. The relationship between the feed concentration and the permeate concentration was observed to be linear. The pervaporation through the grafted PDMS membrane could be used for easy quantitative analysis. The solubility of VOCs for the grafted PDMS membrane was high when compared with the solubility for the PDMS membrane. The grafted PDMS membrane that had high VOC concentrations of the sorbed solution showed an excellent separation performance. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1835–1844, 1999  相似文献   

15.
The separation performance of two different commercially available tubular inorganic membranes was studied for solvent dehydration. The separation layers consisted of A-type zeolite and microporous silica. The membrane characteristics were determined as function of operating conditions such as feed composition, temperature, and permeate pressure in pervaporation and vapor permeation. Among different membranes of the same batch, flux and selectivity were reproducible within 10%. The partial flux of water as the preferentially permeating component increases linearly with the water vapor pressure difference between feed and permeate and depends only marginally (viscosity influence) upon the properties of the organic component. The flux of the organic (retained) component is low and can best be described by assuming a substance and membrane specific permeance (flux over partial pressure difference) that is independent of composition. At very low water concentration in the feed one would expect a strong increase in permeability of the retained component through non-zeolite pores and larger silica pores as predicted by pure component measurements. However, this effect was not observed in mixtures within the concentration range studied here. A temperature rise improves flux rates exponentially while selectivity remains high. Thus, higher module cost in comparison to polymeric membranes can be compensated by reduced membrane area if a higher operating temperature can be chosen. Flux and selectivity decline as a function of permeate pressure with decreasing driving force. In vapor permeation with inorganic membranes superheating of the vaporous feed improves their performance while for polymeric materials a steep flux decline is observed. High flux and selectivity are obtained in the separation of water from alcohols. The normalized flux values of the A-type zeolite membrane are roughly 10 kg/m2 h bar with a mixture selectivity of 2000 for methanol, 4000 for ethanol and 8000 for n-butanol. The average permeance of the amorphous silica membrane lies above 12 kg/m2 h bar with mixture selectivity of 50 for methanol, 500 for ethanol and 2000 for n-butanol. The separation mechanism is mainly based on adsorption and diffusion enhanced by shape selectivity and size exclusion in some cases. The transport characteristics could be described with a simple transport model based on normalized permeate fluxes. With regard to the operation stability of the membranes, no deterioration of the performance was observed for the A-type zeolite in solvent dehydration or in separation of water from reaction mixtures. The silica membrane showed an initial conditioning effect involving a rearrangement of Si-OH groups with an increase in selectivity and decrease in flux of about 30%. After a few hours the performance stabilized and remained constant during further operation.  相似文献   

16.
《分离科学与技术》2012,47(10):2145-2158
Abstract

Studies were performed on the separation of pyridine/water solutions using pervaporation. Organic permeation experiments were performed using a ‘silicalite»-filled silicone composite membrane. Effects of feed concentration, feed temperature, and permeate side pressure were examined. Benchmark conditions of 5.0 wt% pyridine, 50°C, and 2 torr were chosen. At the benchmark conditions, an organic selectivity of 34 and a permeate flux of 0.428 kg/m2h was achieved. An increase in feed concentration caused an increase in both the permeate concentration and flux, but caused a decrease in the selectivity. Also, permeate compositions far exceeded standard vapor—liquid equilibrium. Temperature had an Arrhenius-type relationship with regard to flux, but had no effect on the selectivity. Increasing the permeate pressure caused a steady decrease in permeate flux and also decreased the permeate composition and selectivity.  相似文献   

17.
《分离科学与技术》2012,47(4):627-646
Abstract

In this study permeation and separation characteristics of dimethylformamide (DMF)/water mixtures were investigated by pervaporation (PV), vapor permeation (VP), and vapor permeation with temperature difference (TDVP) methods using alginate membranes crosslinked with calcium chloride. The effects of membrane thickness (30–90 µm), feed composition (0–100 wt%), operating temperature (30–50°C) on the permeation rates and separation factors were investigated. The permeation rate was found to be inversely proportional to the membrane thickness whereas separation factor increased as the membrane thickness was increased. It was observed that the permeation rates in VP and TDVP were lower than in PV however the highest separation factors were obtained with TDVP method. Alginate membranes gave permeation rates of 0.97–1.2 kg/m2 h and separation factors of 17–63 depending on the operation conditions and the method. In addition, sorption‐diffusion properties of the alginate membranes were investigated at the operating temperature and the feed composition. It was found that the sorption selectivity was dominant factor for the separating of DMF/water mixtures.  相似文献   

18.
BACKGROUND: In this research, a pervaporation process was used to recover volatile aroma compounds from lemon juice using a poly(octyl methyl siloxane) membrane. The majority of previous studies have been with binary model feed systems, while the results with actual feed mixtures did not always match those with model feeds. In order to successfully optimize the pervaporation process, it is essential to work with actual fruit juice. The influences of various operating parameters such as feed flow rate, feed temperature and permeate pressure on the permeate flux and selectivity were investigated. For this purpose, three compounds that make a significant contribution to lemon juice aroma, namely, α‐pinene, β‐pinene and limonene were studied. RESULTS: It was shown that decreasing the permeate pressure increased both permeation flux and enrichment factor, while an increase in feed temperature increased the water flux more significantly than the aroma compounds flux, resulting in lower enrichment factor. Also, the results indicated that feed flow rate had no significant effect on the performance of the process. CONCLUSION: The membrane used was found to be very selective towards α‐pinene, β‐pinene and limonene. It can be concluded that pervaporation is an attractive technology for the recovery of lemon aroma compounds as it yields good separation and operates under mild conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
In this study, a hybrid hydrophobic/hydrophilic pervaporation process was employed to separate and purify isobutanol from its dilute aqueous solutions. For this purpose, composite polydimethylsiloxane membranes were initially used for the recovery of isobutanol by hydrophobic pervaporation. Then the hydrophilic pervaporation with a composite polyvinyl alcohol membrane was utilized to separate water from the organic phase of the permeate stream of the hydrophobic pervaporation. The effect of feed flow rate on the performance of pervaporation was investigated. The resistance in series model was also applied to calculate the transport resistances through the composite membranes. It was observed that an enhancement in the feed flow rate led to higher permeation flux and selectivity of the more permeable component, while the flux of the less permeable component was almost constant. Also, the ratio of liquid boundary layer resistance to membrane layer resistance decreased by an increase in the feed flow rate. The isobutanol with a purity of higher than 99 wt.% was produced by the hybrid hydrophobic/hydrophilic pervaporation technique from a 2 wt.% aqueous isobutanol solution.  相似文献   

20.
A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate sidewas developed to describe pervaporation dehydration through scaled-up hollowfiber supported NaA zeolitemembrane. Itwas found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane,which could not be neglected. The effect of geometric size on pervaporation dehydration could bemore significant under higher vacuumpressure in the permeate side. The transfer resistance in the lumen increaseswith the hollowfiber length but decreaseswith lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of dI/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号